
Tripal Documentation
Release 7.x-3.x

Stephen Ficklin, Lacey Sanderson, Bradford Condon et al

Sep 11, 2023

Contents:

1 Tripal v3 User’s Guide 1
1.1 What Is Tripal? . 1
1.2 Install Tripal . 1

1.2.1 Pre-planning . 1
1.2.1.1 IT Infrastructure . 1
1.2.1.2 Technical Skills . 2
1.2.1.3 Development and Production Instances . 2

1.2.2 DRUPAL_HOME Variable . 3
1.2.3 Server Setup . 3

1.2.3.1 Server Setup (Ubuntu 18.04 LTS) . 3
1.2.3.2 Server Setup (Ubuntu 16.04 LTS) . 7
1.2.3.3 Server Setup (CentOS 7) . 10

1.2.4 Drush Installation . 15
1.2.4.1 Install Drush . 16

1.2.5 Installation Method #1: Rapid Installation . 16
1.2.5.1 Database Setup . 16
1.2.5.2 Tripal Installation . 16

1.2.6 Installation Method #2: Step-by-Step Manual Installation 23
1.2.6.1 Drupal Installation . 23
1.2.6.2 Tripal Prerequisites . 30
1.2.6.3 Tripal Installation . 31

1.2.7 Upgrade from Tripal v2 to v3 . 39
1.2.7.1 Step 1: Upgrade Tripal . 40
1.2.7.2 Step 2: Migrate Content . 43
1.2.7.3 Step 3: Use Legacy Templates (optional) . 45
1.2.7.4 Step 4: Delete Tripal v2 Content and Publish Tripal v3 Content 47
1.2.7.5 Troubleshooting . 48

1.2.8 Automating Job Execution . 49
1.2.8.1 Automating Tripal Tasks . 51

1.2.9 Theming your Site . 52
1.2.9.1 Changing the Look-and-Feel . 52
1.2.9.2 Customizing a Theme . 52

1.3 Brief Drupal Overview . 52
1.3.1 User Account Page . 52
1.3.2 Creating Content . 53
1.3.3 Finding Content . 55

i

1.3.4 Site Administration . 56
1.3.4.1 Modules . 56
1.3.4.2 Themes . 57
1.3.4.3 Blocks . 60
1.3.4.4 Menus . 62
1.3.4.5 URL Path . 66
1.3.4.6 Site Configuration . 67

1.3.5 User Accounts . 68
1.4 Learn Chado . 69
1.5 Working with Content Types . 69

1.5.1 Creating Content Types . 69
1.5.1.1 Find a Controlled Vocabulary (CV) Term . 70
1.5.1.2 How to Add a CV Term . 70
1.5.1.3 Create a Tripal Content Type . 70

1.5.2 Setting Page Titles and URLs . 76
1.5.2.1 Setting Page Titles . 77
1.5.2.2 Setting URLs . 78

1.5.3 Configuring Page Layout . 78
1.5.3.1 Rearranging Fields . 80
1.5.3.2 Removing Fields and/or Field Labels . 81
1.5.3.3 Changing Tripal Pane Names . 81
1.5.3.4 Display/Hide Tripal Panes on Page Load . 82

1.5.4 Hide Empty Fields and AJAX loading . 82
1.5.4.1 Hiding Empty Fields . 83
1.5.4.2 Using AJAX to Load Fields . 83

1.5.5 Field Specific Permissions . 84
1.5.5.1 Why Field Permissions? . 84
1.5.5.2 Installing the Drupal Field Permissions module 84
1.5.5.3 Setting Field-specific Permissions . 84

1.5.6 Handling Orphaned Entities . 85
1.6 Setup of an Example Site . 87

1.6.1 Organisms . 87
1.6.1.1 Creating an Organism Page . 88
1.6.1.2 Load data from NCBI Taxonomy . 91
1.6.1.3 Adding New Fields . 92
1.6.1.4 Further Customizations . 95

1.6.2 Analyses . 96
1.6.3 Cross References . 99
1.6.4 Controlled Vocabularies . 101
1.6.5 Genomes and Genes . 102

1.6.5.1 Loading Feature Data . 102
1.6.5.2 Loading a GFF3 File . 102
1.6.5.3 Loading FASTA files . 105
1.6.5.4 Creating Gene Pages . 107
1.6.5.5 Customizing Transcripts on Gene Pages . 110

1.6.6 Importing Publications . 114
1.6.6.1 Manually Adding a Publication . 115
1.6.6.2 Import of Publications . 117
1.6.6.3 Import from the USDA National Agricultural Library 121

1.6.7 Functional Annotations . 122
1.6.7.1 Module Setup . 122
1.6.7.2 Adding BLAST Results . 124
1.6.7.3 Adding InterProScan Results . 133
1.6.7.4 Adding KEGG Results . 136

ii

1.6.7.5 Managing Gene Ontology Annotations . 136
1.7 File Management . 136

1.7.1 User Quotas . 136
1.7.2 User’s Files . 139

1.8 Materialized Views . 140
1.9 Custom Tables . 141
1.10 Searching . 143

1.10.1 Tripal Content-Specific Search Tools . 144
1.10.2 Search API Module: Site-Wide Searching . 144

1.10.2.1 Installing Drupal Search API . 144
1.10.2.2 Define your Search Backend/Server . 146
1.10.2.3 Define a Search Index . 146
1.10.2.4 Creating a Search Interface for your users . 152
1.10.2.5 Configuring What is displayed for each Search Result 154
1.10.2.6 Adding the Keywords Search Box . 156
1.10.2.7 Sort by “Relevance” . 159
1.10.2.8 Only Show results when user clicks Search . 159

1.10.3 Tripal Elasticsearch Module . 160
1.11 Job Management (Tripal Daemon) . 160

1.11.1 Features . 160
1.11.2 Installation . 161
1.11.3 Usage . 161

1.12 Web Services . 161
1.12.1 Overview . 162
1.12.2 Enable Web Services . 162
1.12.3 Exploring Web Services . 162
1.12.4 Structure of a Web Service Response . 163
1.12.5 Primary Services . 164
1.12.6 The Content Service . 164
1.12.7 Content Type Listing . 165
1.12.8 Content Type Members (Entities) . 166
1.12.9 Content (Entity) Resource . 167
1.12.10 Searching for Content . 169
1.12.11 Searching Limitations . 171
1.12.12 Hiding or Adding Content . 172

1.13 Bulk Loader . 172
1.13.1 Plan How to Store Data . 172
1.13.2 Creating a New Bulk Loader Template . 174
1.13.3 Creating a Bulk Loader Job (importing a file) . 183
1.13.4 Sharing Your Templates with Others . 189

1.14 Customizing Your Site . 190

2 Developer’s Guide 191
2.1 Introduction to the Tripal API . 191

2.1.1 Requirements . 191
2.2 Tripal Data Structures . 192

2.2.1 Bundles (Content Types) . 193
2.2.2 Entity . 193
2.2.3 Fields . 194
2.2.4 Field Instances . 194
2.2.5 Entity Types . 194

2.3 Module Development Best Practice . 194
2.3.1 The Drupal Devel Module . 194
2.3.2 Add your module to Tripal.info . 194

iii

2.3.3 Coding Best Practices . 195
2.3.3.1 Host your code on GitHub . 195
2.3.3.2 Associate the GitHub repository with Tripal . 195
2.3.3.3 DOIs . 195
2.3.3.4 Testing and Continuous Integration . 195
2.3.3.5 Documentation . 195
2.3.3.6 Coding Standards . 195

2.4 Accessing Chado . 196
2.4.1 The Chado Query API . 196

2.4.1.1 Generic Queries to a specific chado table . 196
2.4.1.2 Generic Queries for any SQL . 198
2.4.1.3 Loading of Variables from chado data . 199

2.4.2 The Chado Schema API . 199
2.4.2.1 Ensuring columns Tables & Columns exist . 199
2.4.2.2 Checking the Schema Version . 200
2.4.2.3 Retrieving a list of tables . 200
2.4.2.4 Ensuring your Chado instance is compliant . 200
2.4.2.5 Schema Definition . 201

2.5 Creating Custom Modules . 201
2.6 Creating a Custom Field . 201

2.6.1 Selecting Vocabulary Terms . 202
2.6.1.1 Ontologies: what and why? . 202
2.6.1.2 Storage of Terms in Chado . 203
2.6.1.3 Vocabulary Short Names and Namespaces . 203

2.6.2 Manual Field Creation . 209
2.6.2.1 Directory Structure for Fields . 209
2.6.2.2 Anatomy of the ChadoField Class . 210
2.6.2.3 Static Member Variables . 210
2.6.2.4 The load() function. 212
2.6.2.5 elementInfo() function . 215
2.6.2.6 query() function . 218

2.6.3 Creating a Custom Widget . 219
2.6.3.1 The Form . 220
2.6.3.2 Validation . 221
2.6.3.3 Saving the Data . 221

2.6.4 Creating a Custom Formatter . 223
2.6.4.1 The view() function. 223
2.6.4.2 Creating Pagers . 225
2.6.4.3 The settingsForm() Function. 226
2.6.4.4 The settingsSummary() Function. 228

2.6.5 AJAX Responsive Formatters . 229
2.6.5.1 Drupal and AJAX . 229
2.6.5.2 Example form and field . 229

2.6.6 Attach Fields to Content Types . 231
2.6.6.1 The hook_bundle_fields_info() function . 231
2.6.6.2 Programmatically Attaching Fields . 232
2.6.6.3 Allowing Manual Attachment of Fields . 233

2.6.7 Easier Field Creation: Tripal Field Generator . 236
2.7 Exporting Field Settings With Drupal Features . 236

2.7.1 Why Drupal Features? . 236
2.7.1.1 Version control . 237
2.7.1.2 How many Features? . 237
2.7.1.3 A Hazard: Mapping bundle IDs . 237

2.7.2 Drupal Features Tutorial . 237

iv

2.7.2.1 Configuring the bundle fields . 237
2.7.2.2 Exporting the bundle field displays . 239
2.7.2.3 Importing the feature configuration . 241

2.8 Creating Custom Data Loaders . 242
2.8.1 Create a Custom Module . 243
2.8.2 Create the Class File . 243
2.8.3 Static Variables . 243
2.8.4 Form Components . 245

2.8.4.1 The form function . 245
2.8.4.2 The formValidate function . 247

2.8.5 Importer Execution . 248
2.8.5.1 The run function . 248
2.8.5.2 Importing the File . 249

2.8.6 Logging and Progress . 251
2.8.6.1 The logMessage function . 251
2.8.6.2 The setTotalItems and setItemsHandled functions 252

2.8.7 Testing Importers . 252
2.8.7.1 Example file . 252
2.8.7.2 Loading the Importer . 253

2.9 Creating Custom Web Services . 253
2.9.1 Introduction . 253
2.9.2 Getting Started . 254
2.9.3 Documenting the Services . 256
2.9.4 Implementing a Collection Resource . 259
2.9.5 Simplifying the Property Keys . 262
2.9.6 Implementing a Resource . 262
2.9.7 Documenting Properties . 262
2.9.8 More on Parameters . 262
2.9.9 Implementing Other Operations . 262
2.9.10 Controlling Access to Resources . 262

2.10 Continuous Integration . 263
2.10.1 Using GitHub Workflows . 263

2.10.1.1 Telling GitHub about your workflow . 263
2.10.1.2 Configuring a workflow to run PHPUnit tests . 263

2.10.2 Checking your Action . 265
2.10.3 Adding the Badge to your README . 266

2.11 Using ReadTheDocs . 266
2.11.1 What is ReadTheDocs? . 266
2.11.2 How do I add ReadTheDocs to my project? . 266
2.11.3 What should my documentation include? . 267

2.12 Video Tutorials . 267
2.12.1 Testing . 267
2.12.2 Developer Tools . 268
2.12.3 Other . 268

3 Extension Modules 269
3.1 Administrative . 269

3.1.1 Private BioData . 269
3.1.2 Tripal Alchemist . 269
3.1.3 Tripal Curator . 269
3.1.4 Tripal HeadQuarters . 270

3.2 Analysis/Annotation . 270
3.2.1 Tripal Analysis Expression . 270
3.2.2 Tripal Analysis Blast . 270

v

3.2.3 Tripal Analysis KEGG . 270
3.2.4 Tripal Analysis Interpro . 270
3.2.5 Tripal CV-Xray . 270
3.2.6 Tripal OrthoQuery . 271

3.3 Breeding . 271
3.3.1 BIMS . 271

3.4 Data Loading/Collection . 271
3.4.1 Genotype Loader . 271
3.4.2 Mainlab Chado Loader . 271
3.4.3 Raw Phenotypes . 271
3.4.4 Tripal BibTeX . 272
3.4.5 Tripal Plant PopGen Submission . 272
3.4.6 Migrate Chado . 272

3.5 Developer Tools . 272
3.5.1 TripalDock . 272
3.5.2 Tripal Download API . 272
3.5.3 Tripal D3.js API . 273
3.5.4 Tripal Fields Generator . 273
3.5.5 Tripal Rapid Installer . 273
3.5.6 Tripal Test Suite . 273

3.6 Third-party Integration . 273
3.6.1 BrAPI . 273
3.6.2 Tripal Blast . 273
3.6.3 Tripal Galaxy . 274
3.6.4 Tripal JBrowse . 274
3.6.5 VCF Filter . 274

3.7 Searching . 274
3.7.1 CartograTree . 274
3.7.2 Mainlab Chado Search . 274
3.7.3 Tripal ElasticSearch . 274
3.7.4 Tripal MegaSearch . 275
3.7.5 Tripal Sequence Similarity Search . 275

3.8 Visualization/Display . 275
3.8.1 Analyzed Phenotypes . 275
3.8.2 CvitEmbed . 275
3.8.3 Mainlab Tripal Data Display . 275
3.8.4 ND Genotypes . 276
3.8.5 Phylotree . 276
3.8.6 Tripal Fancy Fields . 276
3.8.7 Tripal MapViewer . 276

3.9 In Development . 276
3.9.1 Tripal Apollo . 277
3.9.2 Tripal Multi-Chado . 277

3.10 Tripal Module Rating System . 277
3.10.1 Bronze . 277
3.10.2 Silver . 277
3.10.3 Gold . 278
3.10.4 Rate your Extension Module! . 278

3.11 Adding your Module to this list! . 279
3.11.1 Instructions . 279
3.11.2 Guidelines . 279

4 Tripal Community 281
4.1 Guidelines for Contribution to Tripal . 281

vi

4.1.1 Github Communication Tips . 281
4.1.2 Bugs . 282
4.1.3 Feature Requests . 282
4.1.4 Pull Request (PR) Guideline . 283

4.1.4.1 How to create a PR . 283
4.1.5 How PRs and Issues are Handled . 284
4.1.6 Code of Conduct . 285
4.1.7 Testing/CI . 285

4.2 Unit Tests for Tripal . 285
4.2.1 Tripal Test Suite . 285

4.2.1.1 Installation . 285
4.2.2 Testing criteria . 285
4.2.3 Test organization . 286

4.2.3.1 Submodules . 286
4.2.3.2 Categories . 286

4.2.4 Writing tests . 287
4.2.4.1 Tagging tests . 287
4.2.4.2 Defining the test class . 287
4.2.4.3 Defining individual tests . 287
4.2.4.4 Testing quietly . 288

4.3 Contributing to the Documentation . 289
4.3.1 Guide . 289

4.3.1.1 Install Sphinx . 289
4.3.1.2 Building your changes . 289
4.3.1.3 Tripal conventions . 289

4.4 Tripal Governance . 290
4.4.1 Adopters . 290
4.4.2 Extension Contributors . 290
4.4.3 Core Code Contributors . 291
4.4.4 Committers . 291
4.4.5 The Tripal Project Management Committee (PMC) . 291

4.4.5.1 Communication and Meetings . 292
4.4.6 Tripal Advisory Committee (TAC) . 292

4.4.6.1 Membership . 292
4.4.6.2 TAC Chair . 293
4.4.6.3 TAC Meeting Agenda Items . 293
4.4.6.4 Communication and Meetings . 293

4.4.7 Changes to this Document . 294
4.5 Funding Proposal Development . 294

vii

viii

CHAPTER 1

Tripal v3 User’s Guide

Note: Looking for the Tripal v2 User’s Guide?

1.1 What Is Tripal?

Tripal is a toolkit that facilitates construction of online genomic, genetic, breeding or other biological databases. It uses
Drupal, a popular Content Management System (CMS), and by default integrates with Chado, a community-derived
relational database schema for storage of biological data. However, Tripal v3 is designed such that it can support
other data storage solutions, including no-SQL options. The goal of Tripal is to simplify construction of a community
genomics, genetics or biological website to enable individual labs or research communities to construct a high-quality,
standards-based website for data sharing and collaboration. A secondary goal is to support community development.

Tripal is open-source and provides an Application Program Interface (API). This allows anyone to customize or create
their own tools and extensions. These tools and extensions can in turn be shared with others. Thus, anyone who
adopts Tripal will use common tools and community standards, and can participate with a larger distributed group of
developers all using the same infrastructure.

1.2 Install Tripal

1.2.1 Pre-planning

1.2.1.1 IT Infrastructure

Tripal requires a server with adequate resources to handle the expected load and systems administration skills to get
the machine up and running, applications installed and everything properly secure. Tripal requires a PostgreSQL
databases server, Apache (or equivalent) web server, PHP5 and several configuration options to make it all work.
However, once these prerequisites are met, working with Drupal and Tripal are quite easy.

1

http://tripal.info/tutorials/v2.x
http://www.drupal.org/
http://gmod.org/wiki/Chado

Tripal Documentation, Release 7.x-3.x

There are several ways you could setup a Tripal site:

• Option #1 In-house dedicated servers: You may have access to servers in your own department or group which
you have administrative control and wish to install Tripal on these.

• Option #2 Institutional IT support: Your institution may provide IT servers and would support your efforts to
install a website with database backend.

• Option #3 Commercial web-hosting: If options #1 and #2 are not available to you, commercial web-hosting is
an affordable option. For large databases you may require a dedicated server. Bluehost.com is a web hosting
service that provides hosting compatible with Drupal, Tripal and its dependencies.

• Option #4 In the Cloud: Tripal is a part of the GMOD in the cloud Amazon AWS image created by GMOD. It
is also accompanied by other GMOD tools such as GBrowse2, JBrowse, Apollo and WebApollo.

After selection of one of the options above you can arrange your database/webserver in the following ways:

• Arrangement #1: The database and web server are housed on a single server. This is the approach taken by this
course. It is necessary to gain access to a machine with enough memory (RAM), hard disk speed and space, and
processor power to handle both services.

• Arrangement #2: The database and web server are housed on different servers. This provides dedicated re-
sources to each service (i.e. web and database).

Selection of an appropriate machine

Databases are typically bottle-necked by RAM and disk speed. Selection of the correct balance of RAM, disk speed,
disk size and CPU speed is important and dependent on the size of the data. The best advice is to consult an IT
professional who can recommend a server installation tailored for the expected size of your data.

Note: Tripal does require command-line access to the web server with adequate local file storage for loading of large
data files. Be sure to check with your service provider to make sure command-line access is possible.

1.2.1.2 Technical Skills

Depending on your needs, you may need additional Technical support. Use the following questions to help determine
those needs:

Tripal already supports my data, what personnel do I need to maintain it?

Someone to install/setup the IT infrastructure Someone who understands the data to load it properly

Tripal does not yet support all of my data, but I want to use what’s been done and expand on it. . . .?

Someone to install/setup the IT infrastructure Someone who understands the data to load it properly
PHP/HTML/CSS/JavaScript programmer(s) to write your custom extensions

1.2.1.3 Development and Production Instances

It is recommended that you have separate development and production instances of Tripal. The staging or development
instance allows you to test new functionality, add customization, or test modification or additions to data without
disturbing the production instance. The production instance serves content to the rest of the world. Once you are
certain that customizations and new functionality will work well on the development instance you can easily re-
implement or copy these over to the production site. Sometimes it may take a few trials to load data in the way you
want. A development sites lets you take time to test data loading prior to making it public. The development site can
be password-protected to only allow access to site administrators, developers or collaborators.

2 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.2.2 DRUPAL_HOME Variable

An important convention in this document is the use of the $DRUPAL_HOME environment variable. If you are new
to UNIX/Linux you can learn about environment variables here. Drupal is a necessary dependency of Tripal. The
setup and installation sections describe how to install Drupal. If you follow the instructions exactly as described in this
User’s Guide you will install Drupal into /var/www/html. However, some may desire to install Drupal elsewhere.
To ensure that all command-line examples in this guide can be cut-and-pasted you must set the $DRUPAL_HOME
variable. You can set the variable in the following way:

DRUPAL_HOME=/var/www/html

Be sure to change the path /var/www/html to the location where you have installed Drupal. If you have never
installed Drupal and you intend on following this guide step-by-step then use the command-line above to get started.

Note: You will have to set the $DRUPAL_HOME environment variable anytime you open a new terminal window.

1.2.3 Server Setup

Before installation of Tripal, a web server must be configured and ready, and Tripal requires the following dependen-
cies:

1. A UNIX-based server (e.g. Ubuntu Linux or CentOS are the most popularly used).

2. Web server software. The Apache web server is most commonly used.

3. PHP version 5.6 or higher (the most recent version is recommended).

4. PostgreSQL 9.3 or higher (9.5 required for Chado 1.2 to 1.3 upgrade)

5. Drush 7 or higher

6. Drupal 7.

Warning: PHP 7.2 is not fully compatible with Drupal.

The following sections provide step-by-step instructions to help setup either an Ubuntu or CentOS system.

1.2.3.1 Server Setup (Ubuntu 18.04 LTS)

Note: Tripal can be installed on multiple UNIX/Linux based systems. These instructions are for just Ubuntu 18.04.
However, this guide provides instructions for a several systems. Please choose the one that best suits your needs. If
you install on a different platform please consider sharing your notes and experience to add to this guide!

The following instructions are for setup of Tripal on an Ubuntu version 18.04 LTS Desktop edition. Ubuntu v18.04
is a long-term support version of Ubuntu, meaning that Ubuntu guarantees patches and security fixes for up to five
years. These instructions do not provide guidance for proper configuration settings for the server to handle load, nor
for security settings. Consult the software documentation for proper load handling and security settings before your
site is made public.

1.2. Install Tripal 3

https://www.tutorialspoint.com/unix/unix-environment.htm
https://httpd.apache.org/
http://php.net/
https://www.postgresql.org/
http://www.drush.org/en/master/
https://www.drupal.org/

Tripal Documentation, Release 7.x-3.x

Ubuntu Installation

Please follow the online instructions for download and installation of Ubuntu 18.04 Desktop edition. Please be sure
to install the ‘Desktop’ edition rather than the ‘Server’ edition. The tutorial below will provide the necessary steps to
install the server components needed. If you are using this tutorial to test Tripal you can use a virtual machine such
as the Oracle VirtualBox or VMWare. The virtual machine allows you to install Ubuntu as a “guest” operating system
within your existing “host” operating system (e.g. Windows).

Apache Setup

Apache is the web server software. Ubuntu simplifies the installation of Apache using the ‘apt-get’ utility. To do so,
simply issue the following command:

sudo apt-get install apache2

Apache should now be installed. On the Ubuntu server, navigate to your new website using this address: http://
localhost/. You should see the following page:

Drupal works best with the Apache rewrite module enabled. Within the Ubuntu server, pluggable modules are avail-
able in the Apache configuration directory named /etc/apache2/mods-available. Only those modules that are also
available in the /etc/apache2/mods-enabled directory will be loaded and used by Apache. Therefore, we want to create
a symbolic link for the rewrite module that essentially adds it to the /etc/apache2/mods-enabled directory. To do this
execute the following on the command-line:

4 Chapter 1. Tripal v3 User’s Guide

https://www.virtualbox.org/
http://www.vmware.com/
http://localhost/
http://localhost/

Tripal Documentation, Release 7.x-3.x

cd /etc/apache2/mods-enabled
sudo ln -s ../mods-available/rewrite.load

Next we need to edit the web site configuration file. The configuration file specific for the default website is found
here: /etc/apache2/sites-available/000-default.conf. Drupal needs permission to override some default restrictions set
by the Apache web server, but it only needs to do so in the directory where it will be installed. By default in Ubuntu
18.04, the web document root is the /var/www/html directory. This is where all web files will be placed. Therefore,
we need to adjust the default settings for that directory for Drupal. To do so, edit this file using the ‘gedit’ graphical
text editor that comes with Ubuntu. Because this file is owned by the ‘root’ user, we must use the ‘sudo’ command to
run ‘gedit’ with administrative privileges:

sudo gedit /etc/apache2/sites-available/000-default.conf

Add the following Directory inside the VirtualHost stanza.

<Directory /var/www/html>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
allow from all

</Directory>

Now restart your Apache again.

sudo service apache2 restart

Setup PHP

Drupal uses PHP. In Ubuntu 18.04 there are two different instances of PHP that will be installed: a version for apache
and another for use on the command-line. To install PHP we can use Ubuntu’s apt-get utility.

sudo apt-get install php php-dev php-cli libapache2-mod-php php7.2-mbstring

You may notice that installing the libapach2-mod-php module will automatically restart the Apache web server which
will allow it to parse PHP files. Next, we need a few additional extension modules for PHP that support connection to
a PostgreSQL database server, JSON and the GD graphics library:

sudo apt-get install php-pgsql php-gd php-xml

PHP is now installed both for Apache and for use on the command-line. Before continuing we must make a few
changes to the PHP configuration files. PHP will limit the amount of memory that a script can consume. By default
this limit is too low the Apache configuration of PHP. For Tripal we need that limit to be higher. To change it, edit the
/etc/php5/apache2/php.ini configuration file:

sudo gedit /etc/php/7.2/apache2/php.ini

Within that file, find the setting titled, memory_limit, and change it to something larger than 128M. For this tutorial
we will set the limit to be 2048M, but be sure not to exceed physical memory of your machine:

memory_limit = 2048M

Now, restart the webserver so that it picks up the new changes to the PHP settings.

sudo service apache2 restart

1.2. Install Tripal 5

Tripal Documentation, Release 7.x-3.x

PostgreSQL Server

PostgreSQL is the database software that will be used to house both the Drupal and Tripal databases. PostgreSQL can
be installed on Ubuntu 18.04 simply by issuing the following command.

sudo apt-get install postgresql

PostgreSQL database server is now installed and setup with default options.

Install phpPgAdmin (Optional)

phpPgAdmin is a web-based utility for easy administration of a PostgreSQL database. PhpPgAdmin is not required
for successful operation of Tripal but is very useful. It can be easily installed with an ‘apt-get’ command:

sudo apt-get install phppgadmin

Now navigate to the URL http://localhost/phppgadmin and you should see the following:

Now, phpPgAdmin is available for access only on the local installation of the machine. It will not be available via
remote connections.

6 Chapter 1. Tripal v3 User’s Guide

http://localhost/phppgadmin

Tripal Documentation, Release 7.x-3.x

1.2.3.2 Server Setup (Ubuntu 16.04 LTS)

Note: Tripal can be installed on multiple UNIX/Linux based systems. These instructions are for just Ubuntu 16.04.
However, this guide provides instructions for a several systems. Please choose the one that best suits your needs. If
you install on a different platform please consider sharing your notes and experience to add to this guide!

The following instructions are for setup of Tripal on an Ubuntu version 16.04 LTS Desktop edition. Ubuntu v16.04
is a long-term support version of Ubuntu, meaning that Ubuntu guarantees patches and security fixes for up to five
years. These instructions do not provide guidance for proper configuration settings for the server to handle load, nor
for security settings. Consult the software documentation for proper load handling and security settings before your
site is made public.

Ubuntu Installation

Please follow the online instructions for download and installation of Ubuntu 16.04 Desktop edition. Please be sure
to install the ‘Desktop’ edition rather than the ‘Server’ edition. The tutorial below will provide the necessary steps to
install the server components needed. If you are using this tutorial to test Tripal you can use a virtual machine such
as the Oracle VirtualBox or VMWare. The virtual machine allows you to install Ubuntu as a “guest” operating system
within your existing “host” operating system (e.g. Windows).

Apache Setup

Apache is the web server software. Ubuntu simplifies the installation of Apache using the ‘apt-get’ utility. To do so,
simply issue the following command:

sudo apt-get install apache2

Apache should now be installed. On the Ubuntu server, navigate to your new website using this address: http://
localhost/. You should see the following page:

1.2. Install Tripal 7

https://www.virtualbox.org/
http://www.vmware.com/
http://localhost/
http://localhost/

Tripal Documentation, Release 7.x-3.x

Drupal works best with the Apache rewrite module enabled. Within the Ubuntu server, pluggable modules are avail-
able in the Apache configuration directory named /etc/apache2/mods-available. Only those modules that are also
available in the /etc/apache2/mods-enabled directory will be loaded and used by Apache. Therefore, we want to create
a symbolic link for the rewrite module that essentially adds it to the /etc/apache2/mods-enabled directory. To do this
execute the following on the command-line:

cd /etc/apache2/mods-enabled
sudo ln -s ../mods-available/rewrite.load

Next we need to edit the web site configuration file. The configuration file specific for the default website is found
here: /etc/apache2/sites-available/000-default.conf. Drupal needs permission to override some default restrictions set
by the Apache web server, but it only needs to do so in the directory where it will be installed. By default in Ubuntu
16.04, the web document root is the /var/www/html directory. This is where all web files will be placed. Therefore,
we need to adjust the default settings for that directory for Drupal. To do so, edit this file using the ‘gedit’ graphical
text editor that comes with Ubuntu. Because this file is owned by the ‘root’ user, we must use the ‘sudo’ command to
run ‘gedit’ with administrative privileges:

sudo gedit /etc/apache2/sites-available/000-default.conf

Add the following Directory inside the VirtualHost stanza.

<Directory /var/www/html>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
allow from all

(continues on next page)

8 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

</Directory>

Now restart your Apache again.

sudo service apache2 restart

Setup PHP

Drupal uses PHP. In Ubuntu 16.04 there are two different instances of PHP that will be installed: a version for apache
and another for use on the command-line. To install PHP we can use Ubuntu’s apt-get utility.

sudo apt-get install php php-dev php-cli libapache2-mod-php

You may notice that installing the libapach2-mod-php module will automatically restart the Apache web server which
will allow it to parse PHP files. Next, we need a few additional extension modules for PHP that support connection to
a PostgreSQL database server, JSON and the GD graphics library:

sudo apt-get install php-pgsql php-gd php-xml-parser

PHP is now installed both for Apache and for use on the command-line. Before continuing we must make a few
changes to the PHP configuration files. PHP will limit the amount of memory that a script can consume. By default
this limit is too low the Apache configuration of PHP. For Tripal we need that limit to be higher. To change it, edit the
/etc/php5/apache2/php.ini configuration file:

sudo gedit /etc/php/7.0/apache2/php.ini

Within that file, find the setting titled, memory_limit, and change it to something larger than 128M. For this tutorial
we will set the limit to be 2048M, but be sure not to exceed physical memory of your machine:

memory_limit = 2048M

Now, restart the webserver so that it picks up the new changes to the PHP settings.

sudo service apache2 restart

PostgreSQL Server

PostgreSQL is the database software that will be used to house both the Drupal and Tripal databases. PostgreSQL can
be installed on Ubuntu 16.04 simply by issuing the following command.

sudo apt-get install postgresql

PostgreSQL database server is now installed and setup with default options.

Install phpPgAdmin (Optional)

phpPgAdmin is a web-based utility for easy administration of a PostgreSQL database. PhpPgAdmin is not required
for successful operation of Tripal but is very useful. It can be easily installed with an ‘apt-get’ command:

sudo apt-get install phppgadmin

1.2. Install Tripal 9

Tripal Documentation, Release 7.x-3.x

Now navigate to the URL http://localhost/phppgadmin and you should see the following:

Now, phpPgAdmin is available for access only on the local installation of the machine. It will not be available via
remote connections.

1.2.3.3 Server Setup (CentOS 7)

Note: Tripal can be installed on multiple UNIX/Linux based systems. These instructions are for just CentOS 7.
However, this guide provides instructions for a several systems. Please choose the one that best suits your needs. If
you install on a different platform please consider sharing your notes and experience to add to this guide!

The following sections provide step-by-step instructions for installation of Tripal on a CentOS 7 server. They provide
details for setup of the server, including installation of the Apache web server and the PostgreSQL database server;
installation of Drupal; installation of Drush, the command-line interface for Drupal; prerequisites for Tripal; and
installation of Tripal within Drupal.

CentOS 7 Installation

Please follow the online instructions for download and installation of CentOS 7. The CentOS installation must have
the following:

10 Chapter 1. Tripal v3 User’s Guide

http://localhost/phppgadmin

Tripal Documentation, Release 7.x-3.x

• A user account with administrative access (i.e. sudo privilege).

• A graphical desktop.

• An installed web browser.

• The “Development Tools” should be installed. To install the development tools issue this command:

sudo yum groupinstall "Development Tools"

• A graphical text editor such as ‘gedit’. To Install gedit issue this command:

sudo yum install gedit

• The ‘wget’ utilty for retrieving files from remote web services. To install wget issue this command:

sudo yum install wget

The tutorial below will provide the necessary steps to install the server components needed. If you are using this tutorial
to test Tripal you can use a virtual machine such as the Oracle VirtualBox or VMWare. The virtual machine allows
you to install Ubuntu as a “guest” operating system within your existing “host” operating system (e.g. Windows).

Apache Installation

Apache is the web server software. CentOS simplifies the installation of Apache using the ‘yum’ utility. To do so,
simply issue the following command:

sudo yum install httpd

Then start the web server

sudo systemctl start httpd.service

Execute the following to ensure that the Apache server is started automatically if the server reboots:

sudo systemctl enable httpd.service

Apache should now be installed. On the server, navigate to your new website using this address: http://localhost/. You
should see the following page:

1.2. Install Tripal 11

https://www.virtualbox.org/
http://www.vmware.com/
http://localhost/

Tripal Documentation, Release 7.x-3.x

Next we need to edit the web site configuration file. The configuration file specific for the default website is found
here: /etc/httpd/conf/httpd.conf. Drupal needs permission to override some default restrictions set by the Apache web
server, but it only needs to do so in the directory where it will be installed. By default in CentOS 7, the web document
root is the /var/www/html directory. This is where all web files will be placed. Therefore, we need to adjust the
default settings for that directory for Drupal. To do so, edit this file using the ‘gedit’ graphical text editor (should be
previously installed). Because this file is owned by the ‘root’ user, we must use the ‘sudo’ command to run ‘gedit’
with administrative privileges:

sudo gedit /etc/httpd/conf/httpd.conf

Find the Directory stanza for the /var/www/html directory and edit it so that it looks like the following:

<Directory /var/www/html>
Options Indexes FollowSymLinks MultiViews
AllowOverride All
Order allow,deny
allow from all

</Directory>

Now restart your Apache again.

sudo systemctl restart httpd.service

12 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Setup PHP

Drupal uses PHP. In CentOS there are two different instances of PHP that will be installed: a version for apache and
another for use on the command-line. To install PHP we can use ‘yum’ utility:

yum install php

Next, we need a few additional extension modules for PHP that support connection to a PostgreSQL database server,
the GD graphics library and a few others:

sudo yum install php-gd php-pgsql php-mbstring php-xml

PHP is now installed. Before continuing we must make a few changes to the PHP configuration file. PHP will limit
the amount of memory that a script can consume. By default this limit is too low the Apache configuration of PHP.
For Tripal we need that limit to be higher. To change it, edit the /etc/php.ini configuration file:

sudo gedit /etc/php.ini

Within that file, find the setting titled, memory_limit, and change it to something larger than 128M. For this tutorial
we will set the limit to be 2048M, but be sure not to exceed physical memory of your machine:

memory_limit = 2048M

Now, restart the webserver so that it picks up the new changes to the PHP settings.

sudo systemctl restart httpd.service

PostgreSQL Server

PostgreSQL is the database software that will be used to house both the Drupal and Tripal databases. PostgreSQL can
be installed on CentOS 7 simply by issuing the following command.

sudo yum install postgresql-server

Next, initialize the PostgreSQL database:

sudo postgresql-setup initdb

PostgreSQL database server is now installed and setup with default options. However, it currently does not
allow connections. We want to allow at least connections from the local machine. To do this, edit the
/var/lib/pgsql/data/pg_hba.conf file:

sudo gedit /var/lib/pgsql/data/pg_hba.conf

And set the following to allow connections from the localhost:

IPv4 local connections:
host all all 127.0.0.1/32 md5
IPv6 local connections:
host all all ::1/128 md5

Be sure that any previous “host” lines are commented out by adding a ‘#’ symbol in front. Next, start up the Post-
greSQL server

1.2. Install Tripal 13

Tripal Documentation, Release 7.x-3.x

systemctl start postgresql.service

Finally execute the following to ensure that the PostgreSQL server is started automatically if the server reboots:

systemctl enable postgresql.service

SE-Linux Configuration

SE-Linux is short for Security Enhanced Linux. It comes installed in RedHat flavors of Linux (such as CentOS). It
provides access control mechanisms. If your operating system comes with SE-Linux you will want to change the
security context for the web files and associate those with the web server. The following command can be executed to
allow that:

sudo chcon -R -t httpd_sys_content_rw_t /var/www/html

Additionally, we need to allow web scripts and modules to connect to database servers.

setsebool -P httpd_can_network_connect_db on

Install phpPgAdmin (Optional)

phpPgAdmin is a web-based utility for easy administration of a PostgreSQL database. PhpPgAdmin is not required
for successful operation of Tripal but is very useful. First, we need to install the Extra Packages for Enterprise Linux
(EPEL) library. This library contains many compatible packages including phpPgAdmin. This can be done with the
following command:

rpm -Uvh http://mirror.pnl.gov/epel/7/x86_64/e/epel-release-7-5.noarch.rpm

Next, phpPgAdmin can be easily installed with a ‘yum’ command:

sudo yum install phpPgAdmin

Next, we need to configure phpPgAdmin. To do this, Edit the /etc/phpPgAdmin/config.inc.php file.

sudo gedit /etc/phpPgAdmin/config.inc.php

Within this file, add “localhost” in the following server parameter:

$conf['servers'][0]['host'] = 'localhost';

Now navigate to the URL http://localhost/phpPgAdmin and you should see the following:

14 Chapter 1. Tripal v3 User’s Guide

http://localhost/phpPgAdmin

Tripal Documentation, Release 7.x-3.x

Now, phpPgAdmin is available for access only on the local installation of the machine. It will not be available via
remote connections.

1.2.4 Drush Installation

Drush is a command-line utility that allows for non-graphical access to the Drupal website. You can use it to au-
tomatically download and install themes and modules, clear the Drupal cache, upgrade the site and more. Tripal v3
supports Drush. For this tutorial we will use Drush and therefore we want the most recent, Drupal7-compatible version
installed: we recommend Drush 8.x (see compatibility chart below.)

Drush Version Drush Branch PHP Compatible Drupal versions
Drush 9 master 5.6+ D8.4+
Drush 8 8.x 5.4.5+ D6, D7, D8.3
Drush 7 7.x 5.3.0+ D6, D7
Drush 6 6.x 5.3.0+ D6, D7
Drush 5 5.x 5.2.0+ D6, D7

As you can see from the above table, the newest version of Drupal which supports Drupal 7 is Drush 8.

1.2. Install Tripal 15

Tripal Documentation, Release 7.x-3.x

1.2.4.1 Install Drush

The official documentation for installing Drush 8 can be found here: https://docs.drush.org/en/8.x/install/.

Warning: Don’t accidentally follow the Drupal 8 installation method for your Drupal 7 site! The “site-local”
Drush installation won’t work for Drupal 7.

1.2.5 Installation Method #1: Rapid Installation

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Before installing via the rapid installation process please ensure drush is installed, and the server is setup. Rapid
Installation works with Tripal v3.0-rc2 (release candidate 2) and later. If you are using a previous version of Tripal,
please proceed to the step-by-step instructions.

1.2.5.1 Database Setup

Before we can install Tripal we must have a database ready for it. In the server setup instructions were provided to
set up a PostgreSQL database server. Now, we need to create the Drupal database. To do so we must first become the
PostgreSQL user.

sudo su - postgres

Next, create the new ‘drupal’ user account. This account will not be a “superuser” nor allowed to create new roles, but
should be allowed to create a database.

createuser -P drupal

When requested, enter an appropriate password. Finally, create the new database:

createdb drupal -O drupal

We no longer need to be the postgres user so exit

exit

1.2.5.2 Tripal Installation

Navigate to your Drupal install directory.

cd $DRUPAL_HOME

Note: Make sure you have write permissions within this directory.

Clone the tripal_install project using the git command and move the contents up one level into the web document
directory:

16 Chapter 1. Tripal v3 User’s Guide

https://docs.drush.org/en/8.x/install/

Tripal Documentation, Release 7.x-3.x

git clone https://github.com/tripal/tripal_install.git
mv tripal_install/* ./

Begin the installation for a generic installation with the following command:

drush --include=. tripal-generic-install

From this point onward, you will be asked a series of questions in the terminal window. First you will be asked for
the name of the site (this will appear at the top of your site after creation), the site administrator’s email address, a
username for the administrator to log on, and the password for the administrator:

Name of the site : Tripal
Admin email for the site : admin@gmail.com
Name for your admin user on the site : admin
Password for the admin user, needs to be complex including numbers and characters,
→˓example P@55w0rd: P@55w0rd

These are the site settings provided, please review and confirm they are correct
Site Name: Tripal
Site email address: admin@gmail.com
Administrator username: admin
Administrator password: P@55w0rd

Is this information correct? (y/n): y

Next, you will be asked for the database information: database name, database username, database user password,
host, and port. The database name and user should match what you created in the previous section (i.e. database
name = ‘drupal’ and database user = ‘drupal’). The ‘host’ is the name of the server or its IP address, and the port is a
numerical value that PostgreSQL uses for communication. By default PostgreSQL uses the port 5432. If a mistake is
made you can make corrections as shown below:

Now we need to setup Drupal to connect to the database you want to use. These
→˓settings are added to Drupal‘s settings.php file.

database name: database
postgres username: drupal
postgres password: drupal
host, like localhost or 127.0.0.1: 127.0.01
port, usually S432: 5432
This is the database information provided, please review and confirm it is correct:
Database name: database
Database username: drupal
Database user password: drupal
Database host: 127.0.01
Database port: 5432
Is this information correct? (Y/n): n

Now we need to setup Drupal to connect to the database you want to use. These
→˓settings are added to Drupal‘s settings.php file.

database name: database
postgres username: drupal
postgres password: drupal
host, like localhost or 127.0.0.1: 127.0.0.1
port, usually S432: 5432
This is the database information provided, please review and confirm it is correct:
Database name: database
Database username: drupal

(continues on next page)

1.2. Install Tripal 17

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

Database user password: drupal
Database host: 127.0.0.1
Database port: 5432
Is this information correct? (Y/n): y

After site information and database credentials are provided, Drupal will be installed. You will see this in the terminal:

Now installing Drupal.

--2017-09-20 12:29:16-- https://www.drupal.org/files/projects/drupal-7.56.tar.gz

Resolving www.drupal.org (www.drupal.org)... 151.101.5.175
Connecting to www.drupal.org (www.drupal.org)|151.101.5.175|:443... connected.
HTTP request sent, awaiting response... 200 OK

Length: 3277833 (3.1M) [application/x-gzip]
Saving to: ‘drupal-7.56.tar.gz'

drupal-7.56.tar.gz 100%[::>] 3.13M 1.
→˓82MB/s in 1.75

2017-09-20 12:29:20 (1.82 MB/S) - ‘drupal-7.56.tar.gz' saved [3277833/3277833]

You are about to create a /var/www/html/sites/default/settings.php file and DROP all
→˓tables in your ‘database‘ database. Do you want to continue? (y/n): y

Starting Drupal installation. This takes a while. Consider using the --notify global
→˓option.
Installation complete. User name: admin User password: P@55word

Next, the required modules will be downloaded:

Downloading modules.

Project field_group (7.x-1.5) downloaded to /var/www/html/sites/all/modules/field_
→˓group.
Project field_group_table (7.x-1.6) downloaded to /var/www/html/sites/all/modules/
→˓field_group_table.
Project field_formatter_class (7.x-1.1) downloaded to /var/www/html/sites/all/modules/
→˓field_formatter_class.
Project field_formatter_settings (7.x-1.1) downloaded to /var/www/html/sites/all/
→˓modules/field_formatter_settings.
Project ctools (7.x-1.12) downloaded to /var/www/html/sites/all/modules/ctools.
→˓[success]
Project ctools contains 10 modules: ctools_custom_content, stylizer, ctools_plugin_
→˓example, views_content, ctools_ajax_sample, term_depth, ctools_access_ruleset, page_
→˓manager, bulk_export, ctools.
Project date (7.x-2.10) downloaded to /var/www/html/sites/all/modules/date.
Project date contains 11 modules: date_context, date_migrate_example, date_migrate,
→˓date_popup, date_tool
repeat, date_views, date_all_day, date_api, date_repeat_field, date.
Project devel (7.x-1.5) downloaded to /var/www/html/sites/all/modules/devel.
Project devel contains 3 modules: devel_generate, devel, devel_node_access.
Project ds (7.x-2.14) downloaded to /var/www/html/sites/all/modules/ds.
Project ds contains 7 modules: ds_forms, ds_ui, ds_devel, ds_format, ds_extras, ds_
→˓search, ds.
Project link (7.x-1.4) downloaded to /var/www/html/sites/all/modules/link.

(continues on next page)

18 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

Project entity (7.x-1.8) downloaded to /var/www/html/sites/all/modules/entity.
Project entity contains 2 modules: entity_token, entity.
Project libraries (7.x-2.3) downloaded to /var/www/html/sites/all/modules/libraries.
redirect (7.x-1.0-rc3) downloaded to /var/www/html/sites/all/modules/redirect.
Project token (7.x-1.7) downloaded to /var/www/html/sites/all/modules/token.
Project tripal (7.x-3.1) downloaded to /var/www/html/sites/all/modules/tripal.
Project tripal contains 24 modules: tripal_daemon, tripal, tripal_chado, tripal_ws,
→˓tripal_bulk_loader, tripal_chado_views, tripal_ds, tripal_contact, tripal_natural_
→˓diversity, tripal_views, tripal_core, tripal_library, tripal_organism, tripal_
→˓featuremap, tripal_genetic, tripal_db, tripal_analysis, tripal_phenotype, tripal_
→˓pub, tripal_stock, tripal_project, tripal_cv, tripal_phylogeny, tripal_feature.
Project uuid (7.x-1.0) downloaded to /var/www/html/sites/all/modules/uuid.
Project uuid contains 4 modules: uuid_services, uuid_path, uuid_services_example,
→˓uuid_path
Project jquery_update (7.x-2.7) downloaded to /var/www/html/sites/all/modules/jquery_
→˓update.
Project views (7.x-3.18) downloaded to /var/www/html/sites/all/modules/views.
→˓[success]
Project views contains 2 modules: views_ui, views.
Project webform (7.x-4.15) downloaded to /var/www/html/sites/all/modules/webform.
→˓[success]

Then those modules will be enabled:

Enabling modules.
The following extensions will be enabled: ctools, date, devel, ds, link, entity,
→˓libraries, redirect, tok
en, uuid, jquery_update, views, webform, field_group, field_group_table, field_
→˓formatter_class, field_for
matter_settings, views_ui, date_api
Do you really want to continue? (Y/n): y
webform was enabled successfully.
ctools was enabled successfully.
date was enabled successfully.
webform defines the following permissions: access all webform results, access own
→˓webform results, edit a
ll webform submissions, delete all webform submissions, access own webform
→˓submissions, edit own webform
submissions, delete own webform submissions, edit webform components
ctools defines the following permissions: use ctools import
date_api was enabled successfully.
entity was enabled successfully.
field_formatter_class was enabled successfully.
field_formatter_settings was enabled successfully.
field_group_table was enabled successfully.
jquery_update was enabled successfully.
libraries was enabled successfully.
link was enabled successfully.
token was enabled successfully.
uuid was enabled successfully.
views_ui was enabled successfully.
ds was enabled successfully.
field_group was enabled successfully.
views was enabled successfully.
iredirect was enabled successfully.
uuid defines the following permissions: administer uuid
ds defines the following permissions: admin_display_suite

(continues on next page)

1.2. Install Tripal 19

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

field_group defines the following permissions: administer fieldgroups
views defines the following permissions: administer views, access all views
jdevel was enabled successfully.
The Date API requires that you set up the site timezone and first day of week
→˓settings and the date format settings to function correctly.
redirect defines the following permissions: administer redirects
devel defines the following permissions: access devel information, execute php code,
→˓switch users

Patches are then applied:

Applying patches.

--2017-09-20 12:29:48-- https2//drupal.org/files/drupal.pgsql-bytea.27.patch
Resolving drupal.org (drupal.org)... 151.101.129.175, 151.101.1.175, 151.101.193.175,
Connecting to drupal.org (drupal.org)|151.101.129.175|2443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https2//www.drupal.org/files/drupal.pgsql-bytea.27.patch [following]
--2017-09-20 12:29:49-- https2//www.drupal.org/files/drupal.pgsql-bytea.27.patch
Resolving www.drupal.org (www.drupal.org)... 151.101.5.175
Connecting to www.drupal.org (www.drupal.org)|151.101.5.175|2443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 1613 (1.6K) [text/plain]
Saving to: ‘drupal.pgsql-bytea.27.patch'

drupal.pgsql-bytea.27.patch 100%[===>] 1.58K
→˓ --.-KB/s
in 0s

2017-09-20 12:29:49 (98.4 MB/s) - ‘drupal.pgsql-bytea.27.patch' saved [1613/1613]

and Tripal will be enabled:

Enabling Tripal modules.

The following extensions will be enabled: tripal, tripal_chado, tripal_ds, tripal_ws,
→˓php, tripal_chado_views
Do you really want to continue? (Y/n): y
php was enabled successfully.
php defines the following permissions: use PHP for settings
tripal was enabled successfully.
tripal defines the following permissions: administer tripal, access tripal content
→˓overview, manage tripal content types, upload files, view dev helps
tripal_chado was enabled successfully.
tripal_chado defines the following permissions: install chado, view chado_ids
tripal_chado_views was enabled successfully.
tripal_chado_views defines the following permissions: manage tripal_views_integration
tripal_ds was enabled successfully.
tripal_ws was enabled successfully.
A PHP code text format has been created.

Clear cache.
‘all‘ cache was cleared.

Next, you will be prompted to choose the Chado version you would like to install. Unless you need an earlier version
for a specific reason, it is best to select the most recent version. In this case, Chado v1.3:

20 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Installing Chado.
Which version of Chado would you like installed?
[0] : Cancel
[1] : Install Chado v1.3
[2] : Install Chado v1.2
[3] : Install Chado v1.11
Job ‘Install Chado v1.3‘ submitted.

2017-09-21 03:29:24
Tripal Job Launcher
Running as user ‘admin‘

2017-09-21 032292242 There are 1 jobs queued.
2017-09-21 032292242 Calling2 tripal_chado_install_chado(Install Chado v1.3)
Creating ‘chado‘ schema
Loading sites/all/modules/tripal/tripal_chado/chado_schema/default_schema-1.3.sql...
Install of Chado v1.3 (Step 1 of 2) Successful!
Loading sites/all/modules/tripal/tripal_chado/chado_schema/initialize-1.3.sql...
Install of Chado v1.3 (Step 2 of 2) Successful.
Installation Complete

Next, the site will be prepared and content types created:

Now preparing the site by creating content types.
Job ‘Prepare Chado‘ submitted.

2017-09-21 03:56:30
Tripal Job Launcher
Running as user ‘shawna‘

2017-09-21 03:56:30: There are 1 jobs queued.
2017-09-21 03:56:30: Calling: tripal_chado_prepare_chado()
Creating Tripal Materialized Views and Custom Tables...
Loading Ontologies...
Loading ontology: Taxonomic Rank (3)...
Downloading URL http://purl.obolibrary.org/obo/taxrank.obo, saving to /tmp/obo_RxmcoM
Percent complete: 100.00%. Memory: 32,394,440 bytes.
Updating cvtermpath table. This may take a while...
Loading ontology: Tripal Contact (4)...
Loading ontology: Tripal Publication (S)...68 bytes.
Loading ontology: Sequence Ontology (6)...424 bytes.
Downloading URL http://purl.obolibrary.org/obo/so.obo, saving to /tmp/obo_S40JJr
Percent complete: 100.00%. Memory: 33,718,672 bytes.
Updating cvtermpath table. This may take a while...
Making semantic connections for Chado tables/fields...
Map Chado Controlled vocabularies to Tripal Terms...
Examining analysis...
Examining biomaterial...
Examining contact...
Examining control...
Examining cvterm...
Examining feature...
Examining featuremap...
Examining genotype...
Examining library...
Examining organism...
Examining phenotype...

(continues on next page)

1.2. Install Tripal 21

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

Examining phylotree...
Examining project...
Examining protocol...
Examining protocolparam...
Examining pub...
Examining stock...
Examining stockcollection...
Examining studyfactor...
Examining synonym...

Done.
Creating common Tripal Content Types...

NOTE: Loading of publications is performed using a database transaction.
{If the load fails or is terminated prematurely then the entire set of
Einsertions/updates is rolled back and will not be found in the database

Custom table, ‘tripal_gff_temp‘ , created successfully.
Custom table, ‘tripal_gffcds_temp‘ , created successfully.
Custom table, ‘tripal_gffprotein_temp‘ , created successfully.
Custom table, ‘organism_stock_count‘ , created successfully.
Materialized view ‘organism_stock_count‘ created
Custom table, ‘library_feature_count‘ , created successfully.
Materialized view ‘library_feature_count‘ created
Custom table, ‘organism_feature_count‘ , created successfully.
Materialized view ‘organism_feature_count‘ created
Custom table, ‘analysis_organism‘ , created successfully.
Materialized view ‘analysis_organism‘ created
Custom table, ‘cv_root_mview‘ , created successfully.
Materialized view ‘cv_root_mview‘ created

The final step is to add permissions for the site administrator to view, edit, create, and delete the content types created
in the previous step.

Adding permissions for the administrator to View, edit, create, and delete all the
→˓newly created content types.
Added "View bio_data_1" to "administrator"
Added "create bio_data_1" to "administrator"
Added "edit bio_data_1" to "administrator"
Added "delete bio_data_1" to "administrator"
Added "View bio_data_2" to "administrator"
Added "create bio_data_2" to "administrator"
Added "edit bio_data_2" to "administrator"
Added "delete bio_data_2" to "administrator"
Added "View bio_data_3" to "administrator"
Added "create bio_data_3" to "administrator"
Added "edit bio_data_3" to "administrator"
Added "delete bio_data_3" to "administrator"
Added "View bio_data_4" to "administrator"
Added "create bio_data_4" to "administrator"
Added "edit bio_data_4" to "administrator"
Added "delete bio_data_4" to "administrator"
Added "View bio_data_5" to "administrator"
Added "create bio_data_5" to "administrator"
Added "edit bio_data_5" to "administrator"
Added "delete bio_data_5" to "administrator"

(continues on next page)

22 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

Added "View bio_data_6" to "administrator"
Added "create bio_data_6" to "administrator"
Added "edit bio_data_6" to "administrator"
Added "delete bio_data_6" to "administrator"
Added "View bio_data_7" to "administrator"
Added "create bio_data_7" to "administrator"
Added "edit bio_data_7" to "administrator"
Added "delete bio_data_7" to "administrator"
"all" cache was cleared.

Installation is now complete. You may navigate to your new site. For more information
→˓on using Tripal please see the installation guide on tripal.info.

The installation is now finished! Navigate to your new site by entering it’s URL in a browser. For this example the
URL is: http://localhost/.

1.2.6 Installation Method #2: Step-by-Step Manual Installation

Tripal is designed to be highly configurable in order to support a wide variety of community databases with different
data types and styles. This results in a series of steps for installation to set the site as desired. The following provides
step-by-step instructions for installation of Tripal. Users should use these instructions if a more in-depth understanding
of installation steps is desired. Otherwise, it is recommend that new users follow the Rapid Installation instructions.

1.2.6.1 Drupal Installation

Database Setup

Drupal can use a MySQL or PostgreSQL database but Chado prefers PostgreSQL so that is what we will use for both
Drupal and Chado. We need to create the Drupal database. The following command can be used to create a new
database user and database.

First, become the ‘postgres’ user:

sudo su - postgres

Next, create the new ‘drupal’ user account. This account will not be a “superuser’ nor allowed to create new roles, but
should be allowed to create a database.

createuser -P drupal

When requested, enter an appropriate password. Finally, create the new database:

createdb drupal -O drupal

We no longer need to be the postgres user so exit

exit

Software Installation

1.2. Install Tripal 23

http://localhost/

Tripal Documentation, Release 7.x-3.x

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Before we can install Drupal we must ensure that that we are allowed to add files into the root directory. Select a user
account that will be the owner of all web files and change the owner of the $DRUPAL_HOME directory to that user:

sudo chown -R [user] $DRUPAL_HOME

Substitute [user] for the name of the user that will own the web files.

Note: The apache web server runs as the user ‘www-data’. For security reasons you should chose a user other than
‘www-data’ to be the owner of the Drupal root directory.

Tripal 3.x requires version 7.x of Drupal. Drupal can be freely downloaded from the http://www.drupal.org website.
At the writing of this Tutorial the most recent version of Drupal 7 is version 7.69. The software can be downloaded
manually from the Drupal website through a web browser or we can use the wget command to retrieve it:

cd $DRUPAL_HOME
wget http://ftp.drupal.org/files/projects/drupal-7.69.tar.gz

Next, we want to install Drupal. We will use the tar command to uncompress the software:

tar -zxvf drupal-7.69.tar.gz

Notice that we now have a drupal-7.69 directory with all of the Drupal files. We want the Drupal files to be in our
document root, not in a ‘drupal-7.69’ subdirectory. So, we’ll move the contents of the directory up one level:

mv drupal-7.69/* ./
mv drupal-7.69/.htaccess ./

If an index.html file is present (as is the case with Ubuntu installations) you can move it out of the way so that it does
not interfere with Drupal by executing the following:

mv index.html index.html.orig

Note: It is extremely important the the hidden file .htaccess is also moved (note the second mv command above.
Check to make sure this file is there:

ls -l .htaccess

Configuration File

Next, we need to tell Drupal how to connect to our database. To do this we have to setup a configuration file. Drupal
comes with an example configuration file which we can borrow.

First navigate to the location where the configuration file should go:

cd $DRUPAL_HOME/sites/default/

Next, copy the example configuration that already exists in the directory to be our actual configuration file by renaming
it to settings.php.

24 Chapter 1. Tripal v3 User’s Guide

http://www.drupal.org

Tripal Documentation, Release 7.x-3.x

cp default.settings.php settings.php

Now, we need to edit the configuration file to tell Drupal how to connect to our database server. To do this we’ll use
an easy to use text editor gedit.

gedit settings.php

Find the following line

$databases = array();

and then insert the following array just after the above line:

$databases['default']['default'] = array(
'driver' => 'pgsql',
'database' => 'drupal',
'username' => 'drupal',
'password' => '********',
'host' => 'localhost',
'prefix' => '',

);

Replace the text ‘****’ with your database password for the user ‘drupal’ created previously. Save the configuration
file and close the editor.

Files Directory Creation

Finally, we need to create the directory where Drupal will have write-access to add files. By default, Drupal expects to
have write permission in the $DRUPAL_HOME/sites/default/files directory. Therefore, we will set group
ownership of the directory to the group used by the Apache web server. This will be the user that Drupal uses to write
files.

mkdir -p $DRUPAL_HOME/sites/default/files
sudo chgrp [group] $DRUPAL_HOME/sites/default/files
sudo chmod g+rw $DRUPAL_HOME/sites/default/files

Substitute [group] for the name of the web server’s group. In Ubuntu this is www-data in CentOS this is apache. The
above commands creates the directory, sets the group ownership for group, and gives read/write permissions to the
group on the directory.

Web-based Steps

Navigate to the installation page of our new web site http://localhost/install.php

1.2. Install Tripal 25

http://localhost/install.php

Tripal Documentation, Release 7.x-3.x

Ensure that Standard is selected and click Save and Continue. You will next be asked to select the language you want
to use. Choose English:

26 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Next, you will see a progress bar as Drupal is installed.

1.2. Install Tripal 27

Tripal Documentation, Release 7.x-3.x

Once it completes, a configuration page with some final settings will be visible.

28 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here you will provide details appropriate for your site, including your site name and administrative password. If you
are experimenting with Tripal the following values can be used:

• Site Information - Site Name: Tripal 3.x - Site email: Your email address

• Site Maintenance Account - Username: administrator (all lower-case) - Email: Your email address - Password:

• Server Settings - Default country: (wherever the site is located) - Default time zone: (your time zone)

• Update Notifications (both boxes checked)

Now, click the Save and Continue button. You will see a message about unable to send an email. This is safe to
ignore for the tutorial, but for a production site you will need that your server can send emails to a service provider.
Now, your site is enabled. Click the link Your new site:

1.2. Install Tripal 29

Tripal Documentation, Release 7.x-3.x

1.2.6.2 Tripal Prerequisites

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Tripal v3.x requires several Drupal modules. These include Entity, Views, CTools, Display Suite, Field Group, Field
Group Table, Field Formatter Class and Field Formatter Settings modules. Modules can be installed using the graphical
Drupal website by clicking on the Modules link in the top adminstrative menu bar. Instructions for instaling Modules
via the web-interface can be found here: https://www.drupal.org/documentation/install/modules-themes/modules-7.
However, Drush can be quicker for module installation. The following instructions will show how to install a module
using the Drush command-line tool.

First, install the Entity module. We will download the current version using the drush command. On the command-

30 Chapter 1. Tripal v3 User’s Guide

https://www.drupal.org/project/entity
https://www.drupal.org/project/views
https://www.drupal.org/project/ctools
https://www.drupal.org/project/ds
https://www.drupal.org/project/field_group
https://www.drupal.org/project/field_group_table
https://www.drupal.org/project/field_group_table
https://www.drupal.org/project/field_formatter_class
https://www.drupal.org/project/field_formatter_settings
https://www.drupal.org/documentation/install/modules-themes/modules-7

Tripal Documentation, Release 7.x-3.x

line, execute the following:

cd $DRUPAL_HOME/sites/all/modules
drush pm-download entity

Typically for all module installation we should check the README for additional installation instructions. Next,
enable the module using a drush command:

drush pm-enable entity

For basic Tripal functionality you must also enable the Views and CTools modules. You can specify as many module
as desired on one line:

drush pm-download views ctools
drush pm-enable views views_ui ctools

Finally, Tripal works best when it can provide default display layouts. To support default layouts you must also enable
the remaining dependencies:

drush pm-download ds field_group field_group_table field_formatter_class field_
→˓formatter_settings
drush pm-enable ds field_group field_group_table field_formatter_class field_
→˓formatter_settings

Optionally, you can install the ckeditor module. This module provides a nice WYSIWYG editor that allows you to
edit text on your site using a graphical editor. Otherwise, if you need images or formatting (e.g. underline, bold,
headers) you would be required to write HTML. It is recommended that this module be installed to improve the user
experience:

drush pm-download ckeditor
drush pm-enable ckeditor

Finally, we need an more recent version of JQuery that what comes with Drupal. We can get this by installing the
JQuery update module.

drush pm-download jquery_update
drush pm-enable jquery_update

1.2.6.3 Tripal Installation

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Before installation of Tripal, you must first have a working Drupal installation. Please see the previous section of this
tutorial for step-by-step examples for server setup and Drupal installation instructions. After installation of Tripal, you
may install any Tripal extension modules you may want.

Download Tripal

The easiest way to download Tripal is to use the Drush command-line interface for Drupal. If you do not have Drush
please see the Drush installation section of this tutorial. To download using drush follow these steps:

• Chage directories to your Drupal installation

1.2. Install Tripal 31

Tripal Documentation, Release 7.x-3.x

• Execute the following drush command

drush pm-download tripal

Alternatively, you can download Tripal using the Drupal web interface as per the instructions provided on the Installing
modules documentation at Drupal.org. The Tripal project page at Drupal.org can be found here: https://www.drupal.
org/project/tripal.

Apply Patches

A bug exists in Drupal related to the bytea data type in PostgreSQL. At the writing of this document, a fix is not yet
incorporated into Drupal, but a patch has been provided. Execute the following commands to patch Drupal:

cd $DRUPAL_HOME
wget --no-check-certificate https://drupal.org/files/drupal.pgsql-bytea.27.patch
patch -p1 < drupal.pgsql-bytea.27.patch

There is also a bug in the Drupal Views 3.0 code that prevents Tripal’s administrative and search data views from
functioning. The patch is provided within the tripal_views module. To apply the patch execute the following:

cd $DRUPAL_HOME/sites/all/modules/views
patch -p1 < ../tripal/tripal_chado_views/views-sql-compliant-three-tier-naming-
→˓1971160-30.patch

Install Tripal

The process for enabling the Tripal modules is the same as for the ctools and views modules that were enabled
previously. To install the Tripal package, enter the following command:

drush pm-enable tripal

Tripal v3 is designed to be data store agnostic, therefore any data store with a compatible module can be used. By
default, Tripal supports Chado and a Tripal Chado module is provided. Perform the same steps as before to enable the
Tripal Chado module:

drush pm-enable tripal_chado

There are two more important Tripal modules: tripal_ds and tripal_ws. These modules provide default layouts for
content (tripal_ds) and RESTful web services (tripal_ws). Neither of these modules are required, however without the
default layouts content pages will be less attractive without manual organization. With web services you can share
the content of your site that will allow remote software developers to access data programmatically. The Tripal Web
Services module also will allow integration of data from other Tripal sites with this site. To enable both default layouts
and web services use the following command:

drush pm-enable tripal_ds tripal_ws

Returning to the website, a new Tripal menu item appears at the top in the Administrative menu. Clicking the Tripal
menu item reveals the Tripal administrative menu which contains four sections: Jobs, Data Storage, Extensions and
Vocabularies. Each section will be described later in this guide.

32 Chapter 1. Tripal v3 User’s Guide

https://www.drupal.org/documentation/install/modules-themes/modules-7
https://www.drupal.org/documentation/install/modules-themes/modules-7
https://www.drupal.org/project/tripal
https://www.drupal.org/project/tripal

Tripal Documentation, Release 7.x-3.x

Because we have the Tripal Chado module enabled we will find a link to manage the Chado setup under the Tripal →
Data Storage section. Notice the warning message indicating the Chado installation cannot be found. This is because
the Chado schema has not yet been installed. The Chado schema is not automatically installed into the relational
database (i.e. PostgreSQL). This is because Chado can be installed separately outside of Tripal and therefore Tripal
does not try to overwrite it if it already exists. It is left to the site developer to consciously install Chado. To install
Chado, navigate to Tripal → Data Storage → Chado → Install Chado. For this User’s Guide it is assumed that
Chado is not installed. Select the option to install Chado v1.3 and click the button Install/Upgrade Chado.

1.2. Install Tripal 33

Tripal Documentation, Release 7.x-3.x

After the button is clicked a message will appear stating “Job ‘Install Chado v1.3’ submitted.”. Click the jobs page
link to see the job that was submitted:

34 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

The job is waiting in the queue until the Tripal jobs system wakes and tries to run the job. The jobs management
subsystem allows modules to submit long-running jobs, on behalf of site administrators or site visitors. Often, long
running jobs can time out on the web server and fail to complete. The jobs system runs separately in the background.
In the example above we now see a job for installing Chado. The job view page provides details such as the name of
the job, dates that the job was submitted and job status.

Jobs in the queue can be executed using drush to manually launch the job:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

As the installation of Chado proceeds, we should see output on the terminal console indicating the progress of the
installation. You should see output similar to the following:

Tripal Job Launcher
Running as user 'administrator'

2018-06-29 16:28:38: There are 1 jobs queued.
2018-06-29 16:28:38: Job ID 1.
2018-06-29 16:28:38: Calling: tripal_chado_install_chado(Install Chado v1.3)
Creating 'chado' schema
Loading sites/all/modules/tripal/tripal_chado/chado_schema/default_schema-1.3.sql...
Install of Chado v1.3 (Step 1 of 2) Successful!
Loading sites/all/modules/tripal/tripal_chado/chado_schema/initialize-1.3.sql...
Install of Chado v1.3 (Step 2 of 2) Successful.
Installation Complete

1.2. Install Tripal 35

Tripal Documentation, Release 7.x-3.x

We now see that the job has completed when refreshing the jobs management page:

Prepare Chado and Drupal

To complete the installation of Chado we must prepare it for use with Tripal. Notice in the screen shot above the
message indicates that “Chado is installed by Tripal has not yet prepared Drupal and Chado. . . .”. We must prepare
Chado and Drupal before continuing. To do this, click the link titled prepare both Drupal and Chado. The following
page appears:

36 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

To prepare the site click the button Prepare this site. A new job is added to the jobs queue. Jobs in the queue can be
executed using drush to manually launch the job:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

Note: Preparing Chado may take several minutes to complete. This is because the Sequence Ontology is automatically
downloaded and installed into Chado as well as a few other vocabularies.

Set Permissions

Because we are logged on to the site as the administrator user we are able to see all content. However, Drupal provides
user management and permissions tools that allows the site admin to set which types of users can view the content on
the site. By default there are three types of users anonymous, authenticated and the administrator. For this tutorial we
want to set permissions so that anonymous visitors to the site can see the genomics content. To do this, navigate to
People → Permissions. Here you will see permissions for all types of content.

1.2. Install Tripal 37

Tripal Documentation, Release 7.x-3.x

Preparing Chado and Drupal in a previous step resulted in the automatic creation of some commonly used content types
such as Organism, Analysis, Gene, mRNA, Map, Publication, and others. You can control who can view, create, edit
and delete these types of content types, as well as set some administrative permissions if needed. On the Permission
page, scroll down to the Tripal section. Here you will see permissions that you can set per type of user:

38 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Review these permissions and set them according to how you want content to be managed. Typically, the administrator
user receives all permissions, and anonymous and authenticated users receive ‘View’ permissions for all content types.
If you desire to create other types of users, Drupal allows you to do this by creating new types of roles. For example,
if you know that some users will be responsible for curating content, then you may add a curator role by clicking
the Roles link in the top right corner of this permissions page. After the new role is created you can return to the
permission page to set the permissions accordingly.

1.2.7 Upgrade from Tripal v2 to v3

1.2. Install Tripal 39

Tripal Documentation, Release 7.x-3.x

Note: If you are installing Tripal v3 for the first time you can ignore these upgrade instructions.

1.2.7.1 Step 1: Upgrade Tripal

1. Please note the following before upgrading:

Warning: If you have created custom extension modules for your site please note that deprecated
API functions from Tripal v1.x have been removed from Tripal v3. Therefore, use of deprecated API
functions in templates or custom modules may cause a “white screen of death” (WSOD). Check the
server logs if this occurs to find where deprecated functions may be used.

Warning: Remember to perform a full backup prior to any upgrade. It is recommended to test
upgrade on a copy or development version of your site prior to performing on the production site.

Warning: Upgrade can only be performed using ‘drush’ command.

Warning: If you have made customizations to Chado you may encounter problems during the
upgrade. It is not recommended to ever change any of the existing tables of Chado. However, if
you have and if you do encounter such issues, please use the Tripal Issue queue to request help:
https://github.com/tripal/tripal/issues

If you have custom Drupal fields attached to Tripal nodes then the content in those fields will not auto-
matically be migrated to the new Tripal v3 entities. Bradford Condon has provided some instructions
to help migrate these fields after the site has been upgrade. You can find those instructions here.

2. Put the site in maintenance mode. Before completing any upgrade you should put your site into “maintenance
mode”. This ensures that users are isolated from any temporary error messages generated through the process.
To put the site in maintenance mode, navigate to Administration > Configuration > Maintenance Mode .
Then click the Put site into maintenance mode checkbox and click Save Configuration. Additionally, there
is a text area on this page that allows you to customize the message displayed to your users while your site is in
maintenance mode.

40 Chapter 1. Tripal v3 User’s Guide

https://github.com/tripal/tripal/issues
https://gist.github.com/bradfordcondon/0dddfd015ff6ef1f545364c2ceff1f0b

Tripal Documentation, Release 7.x-3.x

You can also put your site into “Maintenance mode” using drush be executing the following command:

drush vset site_offline 1

3. Disable tripal modules.

Before updating the Tripal codebase, you should disable all Tripal modules. This ensures that Tripal is
not actively trying to access files that you are changing, as well as, clears any cached information for these
modules. When using drush, disabling the core module will disable all other Tripal modules:

drush pm-disable tripal_core

4. The Tripal modules must also be downloaded and updated. To do this, delete the old Tripal v2 modules direc-
tories, located in sites/all/modules from your Drupal root: for example /var/www/html/sites/
all/modules (be sure you have a backup before removing). The following command will retrieve the Tripal
3 version:

drush pm-download tripal-7.x-3.5

5. Enable the tripal module

drush pm-enable tripal

6. Enable the tripal_chado module

drush pm-enable tripal_chado

7. Enable Tripal v2 Legacy modules. Tripal v2 modules are now called ‘legacy modules’. these are the modules
that were disabled in step #2. For backwards compatibility, you should re-enable these modules:

drush pm-enable tripal_core, tripal_views, tripal_db, tripal_cv, tripal_
→˓analysis, tripal_organism, tripal_feature, tripal_pub, tripal_stock

1.2. Install Tripal 41

Tripal Documentation, Release 7.x-3.x

Be sure to enable any additional modules not included in the example drush command above. The easiest
way to ensure you have re-enabled all the modules disabled above is to copy the list drush provided when
asking you to confirm disabling tripal_core above.

8. (Optional but Recommended) Enable the Tripal DS (provides default themeing for Tripal 3.x) and Tripal Web
Services.

• Tripal DS: Tripal 3.x provides complete integration with Drupal’s Display UI allowing you to
re-order fields and customize display using Drupal Extension modules. The Tripal DS module
provides Tripal Panes similar to those in Tripal 2.x (except that more then one pane can be open
at a time) and groups fields by default to make the display less overwhelming.

• Tripal Web Services: Tripal Web services provide a way for Tripal sites to share data with each
other and with their community in a programmatic manner. Your web services will show the
same content available through your Tripal site using the RDF Specification.

drush pm-enable tripal_ds tripal_ws

9. Tripal Daemon provides automatic job execution and was previously a tripal extension module but is now part
of the main Tripal package. If you had Tripal Daemon installed with Tripal 2 and you would like to continue
using it follow these instructions. First, disable the module and remove the module directory.

drush pm-disable tripal_daemon

Next remove the original tripal_daemon module from the sites/all/modules directory of your site. If you
have had the Tripal Daemon installed for Tripal 2 then you should have all the necessary prerequisites and
you can simply re-enable the module:

drush pm-enable tripal_daemon

Note: Remember to restart the tripal_daemon once you have completed the upgrade.

10. Return to your Tripal site, and click the link that appears for preparing Chado and launch the job.

42 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Note: You may see the message “Please update the database using “drush updatedb” before continuing”
You can safely ignore this message and it should disappear after preparing Chado.

11. Next, navigate to the permissions page at Administration > People > Permissions and ensure that all new
Tripal permissions are set appropriately for your site roles.

Note: Tripal v3 adds a variety of new permissions so please check the permissions carefully.

12. You can now bring your site out of maitenence mode. This can be done by either reversing the your actions
through the interface in #1 or through drush with the following command:

drush vset site_offline 0

13. Software Upgrade Complete! At this point your site is running Tripal 3. You currently have all your Tripal 2
pages (known as nodes) living happily inside your upgraded Tripal 3 site. This is known as “legacy mode”. The
upgrade process was designed to allow you to upgrade to Tripal 3 first and then migrate your “nodes” slowly
to the new “entities” as you are able. Migrating from nodes to entities provides greater flexibilty and access to
newer Tripal 3 features.

1.2.7.2 Step 2: Migrate Content

The process allows you to create Tripal 3 content types exposing the same data as your Tripal 2 nodes. Data is not
duplicated as it resides in Chado but rather mappings are made between Chado records and your new Tripal 3 entities

1.2. Install Tripal 43

Tripal Documentation, Release 7.x-3.x

just as they were made to Tripal 2 nodes. This step will not remove or destroy existing Tripal v2 nodes/pages but
will create new Tripal v3 entities/pages. This allows you to keep existing pages while reviewing and customizing the
Tripal v3 content types. Site visitors can continue to visit the Tripal v2 pages. Tripal v3 content types may remain
private while customization is underway. Once customization is completed a subsequent step will allow you to swap
out Tripal v2 pages for the newer Tripal v3 pages. Once this step is complete, you will also be able to expose your
data via Tripal 3 Web Services immediately.

1. Navigate to Administration > Tripal > Data Storage > Chado and click on Step 2.

2. Select an individual content type to migrate from the Tripal v2 Content Type drop-down.

44 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

3. Click the ‘Get Tripal v3 Types’ button to retrieve a list of Tripal v3 content types to which this Tripal v2 type
can be converted. This may take a while depending on the size of your database.

4. Select the checkbox beside each Tripal v3 type you would like to create. The number of entities/pages that will
be created for that content type is shown in brackets beside the name.

5. Then click the “Migrate [Tripal v2 Type]” button. This will submit a Tripal job to create the requested content.
Submit this job manually on the command-line as follows (note we cd to the project root at /var/www/html:
please navigate to wherever your site is installed):

cd $DRUPAL_HOME
drush trp-run-jobs --user=administrator

6. Now repeat 1-5 for each content type. Since this step simply creates new Tripal v3 content without touching the
existing Tripal v2 content, there really is no reason not to migrate all your content types. Especially since the
Tripal v3 content remains private and thus hidden from your users.

1.2.7.3 Step 3: Use Legacy Templates (optional)

This step is completely optional and not necessarily recommended. It was provided to aid the upgrade process for
Tripal sites with lots of customizations who may not have the developers or time to create new Tripal 3 fields to

1.2. Install Tripal 45

Tripal Documentation, Release 7.x-3.x

replace their old templates.

All customizations involving re-ordering or re-naming of existing fields can now be done through the Drupal “Manage
Fields” Admin interface found under Administration > Structure > Tripal Content Types > [Type you are inter-
ested in] > “manage fields”. You can also use this interface to switch from Tripal Panes to a long listing of content,
fieldsets, tables, tabs, accordions, etc. I suggest playing around with this new interface and looking into Drupal Field
Group and/or Display Suite to explore your options for customizing page display through the interface, since this will
ease the transition to Drupal 8.

That said, if you decide to stick with your current customized templates, the following instructions will show you how.
Keep in mind this is done on a per content type basis allowing you to do use the new interface on less customized
content while still relying on your templates for highly customized content.

1. Navigate to Administration > Tripal > Data Storage > Migrate and click on Step 3

2. Click the checkbox for the Tripal v2 content types you want to keep your old templates for. Unchecked content
types will use the new Tripal 3 interface.

3. Click Save.

46 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.2.7.4 Step 4: Delete Tripal v2 Content and Publish Tripal v3 Content

This final step allows you to fully switch to Tripal v3 pages. You can move URLs and titles from Tripal v2 pages to
their corresponding Tripal v3 pages. This ensures user bookmarks and external links to your site are not broken. Here
you can also unpublish Tripal v2 content types or completely remove them if desired. You can perform these actions
in stages such as first moving titles and URLs, then unpublishing Tripal v2 pages and once the migration has been
verified you can finally delete the Tripal v2 pages to free space. Deleting the Tripal v2 content will not delete the data
in Chado. The page is simply removed from the site.

1. Navigate to Administration > Tripal > Data Storage > Migrate and click on Step 4

2. Once you have confirmed that you are happy with the Tripal v3 pages for a given content type, check the desired
check boxes for that content type.

3. Then click submit –This step cannot be reversed!

You have now completed the migration process and can safely disable the Tripal v2.x Legacy modules assuming no
extension modules still depend on them.

Note: If you are a developer of Tripal extension modules, then the Tripal API is completely backwards compatible so
any extension modules that do not interact with nodes directly can safely be made Tripal v3.x compatible by changing

1.2. Install Tripal 47

Tripal Documentation, Release 7.x-3.x

the module to depend on tripal rather then tripal_core (can be done in the modules .info file).

1.2.7.5 Troubleshooting

1. Dealing with stack depth limit exceeded on Step 4 of the Migration.

When there is a large number of nodes, Drupal’s search module fails to update the search_total table and gives the
following error:

Uncaught exception thrown in shutdown function. PDOException: SQLSTATE[54001]:
→˓Statement too complex: 7 ERROR: stack depth limit exceeded
HINT: Increase the configuration parameter &quot;max_stack_depth

You can avoid this problem by clearing out the Drupal search tables byu executing the following SQL commands:

TRUNCATE search_total;
TRUNCATE search_index;

2. For sites that have upgrading from Drupal 6:

If your site was upgraded from Drupal 6, you’ll need to add a new text format with a machine name called
‘full_html’ as this is the default formatter that Tripal v3 uses. As in Drupal 6, the ‘Full HTML’ text format
has a numeric machine name (usually ‘2’) that was later changed to ‘full_html’ in Drupal 7.

To do this, go to Configuration > Text formats in your administrative menu and click on the ‘Add text
format’ link:

Make sure its machine-readable_name is ‘full_html’ and save the configuration.

48 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.2.8 Automating Job Execution

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

The Drupal cron is used to automatically execute necessary Drupal housekeeping tasks on a regular interval. You
should always setup the Drupal cron to ensure your site checks for updates and security issues. To do this, we want
to integrate Drupal cron with the UNIX cron facility. The UNIX cron will automatically execute commands on set
regular intervals. First, we must get the appropriate URL for the cron by navigating to Configuration → Cron. On
this page you will see a link that we will use for cron:

1.2. Install Tripal 49

Tripal Documentation, Release 7.x-3.x

Warning: Be sure to edit the settings on the page and set the drop down value titled Run Cron Every to Never
and save the configuration. If we do not set this to Never then Drupal will run cron when user’s visit the site and
that may cause slowness.

Also, on that page is the URL for cron. In this example the URL is http://localhost/cron.php?cron_key=
pnwI1cni8wjX1tVPOBaAJmoGOrzDsFQCW_7pw.

To add an entry to the UNIX cron we must use the crontab tool:

sudo crontab -e

Add this line to the crontab:

0,30 * * * * /usr/bin/wget -O - -q http://localhost/cron.php?cron_
→˓key=pnwI1cni8wjX1tVPOBaAJmoGOrzDsFQCW_7pwVHhigE

50 Chapter 1. Tripal v3 User’s Guide

http://localhost/cron.php?cron_key=pnwI1cni8wjX1tVPOBaAJmoGOrzDsFQCW_7pw
http://localhost/cron.php?cron_key=pnwI1cni8wjX1tVPOBaAJmoGOrzDsFQCW_7pw

Tripal Documentation, Release 7.x-3.x

Now save the changes. We have now added a UNIX cron job that will occur every 30 minutes that will execute the
cron.php script and cause Drupal to perform housekeeping tasks.

1.2.8.1 Automating Tripal Tasks

Many of the tasks that Tripal needs to perform can take some time to run. Examples include loading of ontologies,
publishing content, and importing data. It is not practical for these tasks to run within the web browser. Therefore,
Tripal provides a jobs management system. When long-running tasks need execution a job is submitted and it waits in
a queue until it is executed. There are several methods that can be used to help ensure jobs can be executed in a timely
manner.

Option #1: Manual Execution of Jobs

Any job that is added to the Job’s system can be run manually on the command line using a Drush command. Through-
out this tutorial instructions are provided to execute jobs manually. Jobs in the queue can be executed using a Drush
command similar to the following:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

Remember to change the username from administrator to the name of the administrator on your site.

Option #2: Additional Cron Entry

If you do not want to manually run every job that is added to Tripal’s job system you can automate execution of the
job by using the same cron system that Drupal uses for housekeeping steps. To do so, use the crontab Command to
add a new line to the bottom of the cron setup:

udo crontab -e

Add this line to the crontab:

0,5,10,15,20,25,30,35,40,45,50,55 * * * * drush trp-run-jobs --username=administrator
→˓--root=$DRUPAL_HOME

Here, job execution will occur every 5 minutes.

Option #3: Tripal Daemon Setup

Tripal version 3 has incorporated the Tripal Daemon module. This module was previously an extension but is now part
of the Tripal package. The Tripal Daemon module will allow jobs to execute immediately upon submission, rather
than waiting on the time set in the cron setup of option #2. This can be especially useful when end-users submit jobs
such as with the Tripal Blast UI module. To enable the Tripal Daemon module use the following Drush command
within your Drupal installation directory:

drush pm-enable tripal_daemon

Further documentation for setup of the Tripal Daemon will appear here in the future. For now, please see the Job
Management page for usage instructions.

1.2. Install Tripal 51

Tripal Documentation, Release 7.x-3.x

1.2.9 Theming your Site

1.2.9.1 Changing the Look-and-Feel

Drupal makes it easy to change the look-and-feel of your site by providing Themes. There are hundreds of contributed
themes on the Drupal.org website that can be downloaded and installed on any Drupal site to instantly change the look.
Drupal comes with several themes with the default theme called Bartik. Once your Tripal site is available you can see
the enabled theme and view other available themes by clicking the Appearance link in the administrator’s menu.

1.2.9.2 Customizing a Theme

If you want to make customizations to the theme you should create your own sub theme. A sub theme borrows from
an existing base theme (e.g. Bartik) and allows you to make your customizations. Thus, when updates for a theme
are released you can easily upgrade your base theme without losing your changes. To create a sub theme, follow the
instructions on the Creating a sub-theme page on the Drupal website. Alternatively, completely custom themes do not
borrow from any other theme, you can create your own full-blown theme by following the Theming instructions at the
Drupal website.

Note: You may want to explore your Tripal site first to become familiar with the functionality and where you might
want to make customizations before attempting to create a custom sub theme.

1.3 Brief Drupal Overview

Note: Some of the images used on this page refer to Tripal v2. However, this Drupal overview applies equally well
to both versions.

1.3.1 User Account Page

All users have an account page. When you first install Drupal, you are logged in as the administrator. The account
page is simple for now. Click the My account link on the left sidebar. You’ll see a brief history for the user and an
Edit tab. Users can edit their own information using the edit interface:

52 Chapter 1. Tripal v3 User’s Guide

https://www.drupal.org/project/project_theme
https://www.drupal.org/project/project_theme
https://www.drupal.org/docs/7/theming/creating-a-sub-theme
https://www.drupal.org/docs/7/theming

Tripal Documentation, Release 7.x-3.x

1.3.2 Creating Content

Creation of content in Drupal is very easy. Click the Add content link on the top administrative menu.

1.3. Brief Drupal Overview 53

Tripal Documentation, Release 7.x-3.x

You’ll see two content types that come default with Drupal: Article and Basic Page. Here is where a user can add
simple new pages to the website without knowledge of HTML or CSS. Click the Basic Page content type to see the
interface for creating a new page:

54 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

You’ll notice at the top a Title field and a Body text box. All pages require a title and typically have some sort of
content entered in the body. Additionally, there are other options that allow someone to enter HTML if they would
like, save revisions of a page to preserve a history and to set authoring and publishing information.

For practice, try to create two new pages. A Home page and an About page for our site. First, create the home page
and second create the about page. Add whatever text you like for the body.

In the screenshots above, you may have noticed the link Add Tripal Content. Tripal content is different from the
typical Drupal content types: Basic Page or Article. Instead the content that Tripal provides is the biological and
ancillary data that your site will provide to users. Later this tutorial will describe how to add new biological data.

1.3.3 Finding Content

To find any content that has been created on the site, click the Find Content link on the administrative menu at the
top. The page shows all content available on the site. You will see the About and Home pages you created previously:

1.3. Brief Drupal Overview 55

Tripal Documentation, Release 7.x-3.x

You’ll also notice a set of drop down boxes for filtering the content. For sites with many different content types and
pages this helps to find content. You can use this list to click to view each page or to edit.

Later in this guide, instructions will be provided for finding Tripal Content. Tripal content is different from the typical
Drupal content types: Basic Page or Article. Instead the content that Tripal provides is the biological and ancillary
data that your site will provide to users. It is also accessible via a link named Find Tripal Content found on the same
menu bar as Find Content

1.3.4 Site Administration

1.3.4.1 Modules

Click the Modules link on administrative menu at the top of the page:

56 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here is where you see the various modules that make up Drupal. Take a minute to scroll through the list and read
some of the descriptions. The modules you see here are core modules that come with Drupal. Those that are checked
come pre-enabled. Those that are not checked we will need to install them if we want to use them. To enable or “turn
on” a module, check the box next to the desired module, then scroll to the bottom and click ‘Save configuration’.
Your site will now have the functionality provided by that module. Alternatively, you can search for modules that may
be useful to your intended site design at the Drupal module repository, https://drupal.org/project/project_module, and
install them by clicking the Install New Module link. Finally, a 3rd method to install modules is by use of the drush
tool. We will use drush for this tutorial.

1.3.4.2 Themes

Next, click the Appearance link on the administrative menu at the top of the page:

1.3. Brief Drupal Overview 57

https://drupal.org/project/project_module

Tripal Documentation, Release 7.x-3.x

Here, you’ll see a list of themes that come with Drupal by default. Here you will see the default theme is called
Bartik. This theme controls the appearance of all content on the site. You can easily change the way the site looks
by changing the default theme to another theme. For this tutorial, we would like to use the Garland theme. If you
scroll down you’ll see that one theme named Garland. click the link in the Garland theme section titled Enable and
set default. The current look of the site is using the Garland theme.

58 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Now, click the house icon in the top left. Our home page now uses the Garland theme:

1.3. Brief Drupal Overview 59

Tripal Documentation, Release 7.x-3.x

1.3.4.3 Blocks

Blocks in Drupal are used to provide additional content to any page that already exists. Examples of blocks might be
a short overview of recent news items, Twitter feeds, links, recently added content, etc. The blocks interface can be
found by navigating to Structure → Blocks using the top administrative menu.

On this page you’ll see a list of available blocks and where they are located within the site.

60 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here you can see that the Search form, Navigation, and User Login blocks are all on the left sidebar of Garland
theme. There are also a list of other regions available that do not have any blocks and there are many blocks which
are Disabled but could be added to a region on the page. For this tutorial, we would like for blocks to appear on the
right sidebar rather than the left sidebar. Therefore, change the Search form, Navigation, and User Login to all use
the right sidebar by changing the drop down box next to each one. When done, click the Save Blocks button at the
bottom. Now when we view our home page the navigation links, search form and user login box (not shown while
logged in) all appear on the right side:

1.3. Brief Drupal Overview 61

Tripal Documentation, Release 7.x-3.x

1.3.4.4 Menus

For this tutorial, we want to add new links in the Main Menu to our new Home and About pages we created earlier.
In the Garland theme, the main menu appears in the top right corner and currently only has the link ‘Home’. We want
to change this link to direct to our new home page. But first, we need to find the path for our home page. The path for
a page can be found in the address bar for the page. In Drupal pages of content are generally referred to as nodes. We
can find the new home and about pages using the Find content link in the top administrative menu. If we click the
link for our home page you’ll see the address is http://localhost/node/1. Our about page is http://localhost/node/2 (i.e
the first and second pages we created).

Drupal provides an interface for working with menus, including adding new menu items to an existing menu or for
creating new menus. You can find the interface for working with menus by navigating to Structure → Menus via the
administrative top menu:

62 Chapter 1. Tripal v3 User’s Guide

http://localhost/node/1
http://localhost/node/2

Tripal Documentation, Release 7.x-3.x

Click the link list links in the operations section for the Main Menu. Here we see that the Home link already exists:

1.3. Brief Drupal Overview 63

Tripal Documentation, Release 7.x-3.x

Click edit to change the location of the Home menu item. In the form that appears, we need to set the path for our new
home page. The path for each of these nodes is node/1 and node/2. Fill out the form fields with these values

Form element Value
Menu Link Title Home
Path node/1
Description Tripal 2.0 Demo Home Page
Enabled checked
Show as Expanded no check
Parent item <Main menu>
Weight 0

The resulting page appears as follows:

64 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

The settings above will give the menu link a title of Home and put it on the Main menu menu. If we then click the Save
button at the bottom our Home menu item now redirects us to our new home page. Now, we also want to add a new
menu item for the About page. Return to the Main menu configuration page and add a new link with the following
values:

1.3. Brief Drupal Overview 65

Tripal Documentation, Release 7.x-3.x

Form element Value
Menu Link Title About
Path node/2
Description About this site
Enabled checked
Show as Expanded no check
Parent item <Main menu>
Weight 0

Click Save and a new menu item should appear. You can then change the order of the menu items by dragging and
dropping the link using the cross-hairs next to each menu item.

1.3.4.5 URL Path

As mentioned previously, the URL paths for our pages have node/1 and node/2 in the address. This is not very intuitive
for site visitors.

To set a path, click on our new About page in the new menu link at the top and click the Edit tab (you may have to
close the overlay to see the menu item). Scroll to the bottom of the edit page and you’ll see a section titled URL path
setting. click to open this section. Since this is our about page, we simply want the URL to be http://localhost/about.
To do this, just add the word “about” in the text box and click the Save button. You will now notice that the URL for
this page is no longer http://localhost/node/2 but now http://localhost/about. Although, both links will still get you to
our About page.

66 Chapter 1. Tripal v3 User’s Guide

http://localhost/about
http://localhost/node/2
http://localhost/about

Tripal Documentation, Release 7.x-3.x

Now, use the instructions described above to set a path of ‘home’ for our home page.

1.3.4.6 Site Configuration

There are many options under the Configuration link of the administrative menu at the top. Here we will only look
at one of these at the moment–the Site Information page. Here you will find the settings we made when installing
the site. You can change the site name, add a slogan, mission and footer text to the. The section titled Front Page is
where we can tell Drupal to use our new Home page we created as the first page visitors see when they view the site.
We want this to be the same as the home page we created and added a link for in the Main menu. In this text box
enter the text node/1. Notice there is no preceding forward slash. Alternatively we could have used the URL path we
added in the previous step. Let’s add a slogan: Resources for Community Genomics.

1.3. Brief Drupal Overview 67

Tripal Documentation, Release 7.x-3.x

Now, click the Save configuration button at the bottom. You’ll now see the slogan now at the top of the page. Also,
if you click the site name or the home icon at the top left we are now redirected to the new home page.

1.3.5 User Accounts

For this tutorial, we will not discuss in depth the user management infrastructure except to point out:

• User accounts can be created

• Users are assigned to various roles

• Permissions for those roles can be set to allow groups of users certain administrative rights or access to specific
data.

68 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Explore the Drupal User Management menu to see how users can be created, added to roles with specific permissions.

1.4 Learn Chado

Note: While you can use Tripal out-of-the-box for a whole genome or transcriptome based website, You will need a
good understanding of Chado to expand into other data types and to take full advantage of Tripal

The primary data store for Tripal is Chado. Chado is an open-source database schema managed by GMOD. Chado
was selected for Tripal because it is open-source, it is maintained by the community in which anyone can provide
input, and use of Chado encourages common data storage between online biological sites which decreases duplication
of effort.

Chado is meant to be installed into a PostgreSQL database and is designed to house a variety of biological data.
For example, Tripal comes with a variety of content types. However, if you want to create new content types you
must know how that data will be stored in Chado. Additionally, use of the Bulk Loader (a tab-delimited data loader
for custom data formats) requires a good understanding of Chado. Finally, creating extensions to Tripal requires an
understanding of Chado to write SQL and or new Tripal fields. The following links provide training for Chado.

Resource Link
Chado Home Page http://gmod.org/wiki/Chado>
Chado Tutorial http://gmod.org/wiki/Main_Page>
Chado Table List http://gmod.org/wiki/Chado_Tables>
Chado Best Practices http://gmod.org/wiki/Chado_Best_Practices>

1.5 Working with Content Types

New in Tripal v3 is the ability to create your own content types and manage their display! In previous versions of
Tripal a bit of PHP programming was necessary. This is no longer the case. Tripal v3 comes pre-populated with a
variety of content types and provides a web interface that allows you to create your own. This section provides details
for working with content types in Tripal.

1.5.1 Creating Content Types

Note: Prior to creating a new content type you should understand the structure of Chado and how others use Chado
to store similar types of data.

Tripal v3 comes with some pre-defined content types, however you have the ability to create new Content Types
through the Administrative user interface! In Tripal v3, all content types are defined by Controlled Vocabulary (CV)
terms. This has a number of advantages:

1. Facilitates sharing between Tripal sites.

2. Provides a clear indication of what content is available on your site.

3. Makes content creation more intuitive from Tripal v2 (add a “Gene” rather then a “feature”).

4. Allows complete customization of what data types your site provides.

5. Integrates tightly with web services allowing Tripal to adhere to RDF specifications.

1.4. Learn Chado 69

http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Main_Page
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Introduction_to_Chado
http://gmod.org/wiki/Chado
http://gmod.org/wiki/Main_Page
http://gmod.org/wiki/Chado_Tables
http://gmod.org/wiki/Chado_Best_Practices
https://en.wikipedia.org/wiki/Controlled_vocabulary
https://en.wikipedia.org/wiki/Controlled_vocabulary

Tripal Documentation, Release 7.x-3.x

1.5.1.1 Find a Controlled Vocabulary (CV) Term

Before creating a new content type for your site you must identify a CV term that best matches the content type you
would like to create. CVs are plentiful and at times selection of the correct term from the right vocabulary can be
challenging. If there is any doubt about what term to use, then it is best practice to reach out to others to confirm your
selection. The Tripal User community is a great place to do this by posting a description of your content type and your
proposed term on the Tripal Issue Queue. Confirming your term with others will also encourage re-use across Tripal
sites and improve data exchange capabilities.

The EBI’s Ontology Lookup Service is a great place to locate terms from public vocabularies. At this site you can
search for terms for your content type. If you can not find an appropriate term in a public vocabulary or via discussion
with others then you create a new local term within the local vocabulary that comes with Tripal.

Warning: Creation of local terms is discouraged but sometimes necessary. When creating local terms, be careful
in your description.

1.5.1.2 How to Add a CV Term

Loading From an OBO File

Once you’ve chosen a term to describe your content type, you may need to add the term to Tripal if it is not already
present. Many CVs use the OBO file format to define their terms. If the term belongs to a controlled vocabulary with
a file in OBO format then you can load all the terms of the vocabulary using Tripal’s OBO Loader at Tripal → Data
Loaders → Chado Vocabularies → Chado OBO Loader.

Manually Adding a Term

Alternatively, you can add terms one at a time. To add a single term either from an existing vocabulary or a new
local term, navigate to Tripal → Data Loaders → Chado Vocabularies → Manage Chado CVs and search to
see if the vocabulary already exists. If it does you do not need to add the vocabulary. If it does not exist, click the
Add Vocabulary link to add the vocabulary for your term. Then navigate to Tripal → Data Loaders → Chado
Vocabularies → Mange Chado CV Terms then click the Add Term link to add the term.

1.5.1.3 Create a Tripal Content Type

Creation of a new content type requires familiarity with Chado. This is because data records used by content types
must be mapped to actual data and the data lives in Chado. Tripal’s interface for creating content types allows you
to provide the CV term for the type and then indicate where in Chado the data is/will be stored. Chado is a flexible
relational database schema. Thus, it is possible for different sites to store data in different ways. It is best practice
however to follow community standards when storing data. Therefore, please review the online documentation for
Chado. If you are unclear how data for your content type should be stored in Chado please consider emailing the
Chado mailing list or posting an issue on the Chado GitHub issue queue to ask for help or add a request for help on
the Tripal issue queue.

To add a new content type, start by navigating to Structure → Tripal Content Types and click on the Add Tripal
Content Type link at the top. This will take you to a web form that leads you through the process of creating a custom
Tripal Content Type.

70 Chapter 1. Tripal v3 User’s Guide

https://github.com/tripal/tripal/issues
http://www.ebi.ac.uk/ols/index
https://owlcollab.github.io/oboformat/doc/GO.format.obo-1_4.html
http://gmod.org/wiki/GMOD_Mailing_Lists
https://github.com/GMOD/Chado

Tripal Documentation, Release 7.x-3.x

Genetic Marker Example

To demonstrate how to create a new content type we will use the example of a genetic marker. First, enter for the
name of the term you would like to use to describe your content in the Content Type autocomplete textbox. Then,
click Lookup Term. This should bring up a list of matching terms from which you can select the specific term you
would like to use. Sometimes the same term exists in multiple vocabularies and you can select the proper one.

During content type creation there is as a section to specify which Chado tables will store your data. Chado is typically
structured with primary base tables (e.g. organism, feature, stock, project, etc) and a set of linker and property tables
that contain ancillary data related to the base records. Here you must first choose the base table where primary records
for your data type are stored. For our example, because genetic markers are sequence features, they are stored in the
Chado feature table.

1.5. Working with Content Types 71

Tripal Documentation, Release 7.x-3.x

Next, you will be asked if all of the records in the selected table are of the desired content type. Usually the answer to
this is “No”, especially if the Chado table has a type_id column. In our case. The feature table does have a type_id
column so we must select “No”.

72 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

If all of the records in the selected table do not belong to the content type then the form knows enough about each
Chado table to offer you appropriate options for how to store data for your content type. The form knows that the
feature table has a type_id column so it asks if we can differentiate records for our content type using the type_id
field. For our example genetic marker we can do so.

Just prior to creating our content type we are provided a summary of our selection to review:

1.5. Working with Content Types 73

Tripal Documentation, Release 7.x-3.x

Finally, click the Create Content Type to create a custom genetic marker content type. We are provided with a
message indicating that a job has been added for creation of the content type. Depending how large the Chado
database is, creation of a contnet type may take awhile, hence we must run it as a job.

74 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Once the content type is created, you can create pages for site visitors. This will be described later in this User’s Guide.
In short, you can manually create new records through brand new web forms that are created automatically for your
content type, or you can use a data loader to import your data directly to Chado, then Publish those records through
the Tripal interface.

Note: Each time you create a new content type, you get several new things:

• A new search tool will be created automatically for the content type.

• A new set of permissions to help you control access is created.

SNP Example

Perhaps we want to be more specific with our genetic marker pages and create pages for each type of genetic marker
(e.g. SNP, RFLP, etc. pages). Suppose for this example that we continue to store genetic markes in the feature table
and use the genetic_marker term in type_id as in the previous example. To differentiate between different markers,
we store a record in the featureprop table where the featureprop.type_id indicates the that the property provides the
marker type and the featureprop.value column houses the string for the marker type (e.g. “SNP”). Thus, any genetic
marker that has a property with this type of featureprop should form part of our SNP content type.

To accomplish this we can walk through the content type creation form and set the following values:

1.5. Working with Content Types 75

Tripal Documentation, Release 7.x-3.x

Field Value
Content Type SNP (SO:0000694)
Storage Backend Chado
Chado Table feature
Are all records in the feature table of type ‘genetic_marker’? No
Type column –None–
Do you want to use the featureprop table to distinguish between content
types?

Yes

Base Type ‘genetic_marker’
(SO:0001645)

Property Type type (rdfs:type)
Property Value SNP

After clicking the Create content type button a job will be submitted and we will have a new SNP content type whose
data is saved to both the feature and featureprop tables.

1.5.2 Setting Page Titles and URLs

Tripal allows for Page Titles and URLs to be set within the Tripal Content type editing interface. This provides the
ability to construct consistent url patterns and titles across your site.

76 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.5.2.1 Setting Page Titles

Page titles can be set within the edit mechanism of the Tripal Content type. This can be found on the Structure →
Tripal Content Types and click the edit link for the desired content type. Scroll to the bottom of the page to the Page
Title options tab.

1.5. Working with Content Types 77

Tripal Documentation, Release 7.x-3.x

The page title format can be generated using a combination of token. When titles are generated for a new page, the
tokens are replaced with the appropriate field values to which they refer. A list of available tokens can be found under
the Available Tokens link.

Note: We recommend you choose a combination of tokens that will uniquely identify your content.

If you already have content within your site and need to update all page titles you can choose to Bulk update all titles.
This will update all titles for the existing content that belong to this type. If your title is used to build your alias you
will also need to Bulk update all aliases.

1.5.2.2 Setting URLs

URLs, also known as aliases, can be found just by selecting the Page Title options tab. The URL pattern can be
generated using a combination of token. The tokens can be found under the Available Tokens link. If you already
have content within your site and need to update all URLs you can choose to Bulk update all aliases. This will update
all existing URLs for all pages of the content type . It will also create redirects from the old URL to the new URL to
ensure 404s and broken links are not created.

1.5.3 Configuring Page Layout

This is one of the many new exciting features of Tripal v3. Integration with Drupal Fields has gone to a whole new
level. Site builders have unprecedented control over the display of each piece of data through the administrative user
interface. Previously, site builders were required to edit PHP template files to change the order, grouping or wording
of content.

You can configure the display of a given Tripal Content Type by navigating to Structure → Tripal Content Types
and then selecting the Manage Display link beside the content type you would like to configure.

78 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

The Manage Display User Interface lists each Drupal Field in the order they will be displayed on the page. Fields are
grouped into Tripal Panes by the Tripal DS module and the page is automatically divided into a right and left column.
By default the left column contains the table of contents which lists the Tripal Panes available to the user in the order
they are listed in this UI. The following screenshots are using the Analysis Content Type for demonstatration.

1.5. Working with Content Types 79

Tripal Documentation, Release 7.x-3.x

1.5.3.1 Rearranging Fields

To rearrange the fields within a Tripal pane, simply drag them into the order you would like them. For example, the
description is currently within the Summary table –it makes much more sense for it to be below the table but still
within the summary. To do this, simply drag the description field to the bottom of the summary table and then move it
in one level as shown in the following screenshot. Then click the Save button at the bottom to save the changes.

80 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.5.3.2 Removing Fields and/or Field Labels

Now say we don’t want the label “Description” in front of description content since it’s pretty self explanatory. We can
do that by changing the drop-down beside “Description” which currently says “Above” to “Hidden”. This removes the
label for the field assuming it’s not within a table.

There may also be data you want to collect from your user but don’t want to display on the page. This can be
achomplished by disabling the field in the Manage Display UI. For example, we might not feel the need to tell users
that this is an alaysis page and thus want to hide the Resource Type Field. This is done by changing the drop-down
beside the Resource type field from “Right” to “Disabled”.

Warning: Don’t forget to save the configuration often as you are changing it. You will not see changes to the
page unless the Save button at the bottom of the Manage Display UI is clicked.

1.5.3.3 Changing Tripal Pane Names

If you enabled the tripal_ds module during installation then you will have what is called Panes into which fields can
be grouped. With the tripal_ds module all field come pre-organizd into panes. The name of a pane is displayed both in
the header of the pane itself and in the Table of Contents. To change this name, click the gear button to the far right of
the Tripal Pane you would like to change. This will bring up a blue pane of settings. Changing the Field Group Label
will change the display name of the pane. For example, the following screenshot shows how you would change the

1.5. Working with Content Types 81

Tripal Documentation, Release 7.x-3.x

“Cross References” Tripal Pane to be labeled “External Resources” instead if that it what you prefer. Then just click
the Update button to see your changes take effect.

1.5.3.4 Display/Hide Tripal Panes on Page Load

You can also easily control which Tripal Panes you would like displayed to the user on initial page load. By default
the Summary Pane is the only one configured to show by default. However, if you would prefer for all panes or even
a specific subset of panes to show by default, you can simply click the gear button to the far right of each Tripal Pane
you want displayed by default and uncheck the “Hide panel on page load” checkbox. This gives you complete control
over which panes you want your user to see first. If more then one pane is displayed by default then they will be shown
in the order they are listed on the Manage Display UI.

1.5.4 Hide Empty Fields and AJAX loading

Tripal provides two additional controls for display of fields on a page:

• Hiding fields with no data.

• Loading fields using AJAX.

You will find two check boxes when editing any content page that gives you these controls. Navigate to Structure
→ Tripal Content Types and then click on any Tripal Content Type. You will see options similar to the
following:

82 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.5.4.1 Hiding Empty Fields

The previous sections of this guide instructed how to rearrange fields on a page, hide their titles, and organize them
into panes. However, while there are many fields many of them may not have any data. All of these fields are present
because the data store (e.g. Chado) has the capacity to house the type of data the fields represent, but if you did not
load data appropriate for those fields then they will have no data.

By default Tripal v3 hides all empty fields from the user. However if you would prefer to show all fields to the user
regardless of whether there is content for that particular page edit the content type and click the box labeled Hide
Empty Fields and click the Save button at the bottom. The next time anyone loads any page for the given content type
all fields will be shown regardless if they have data.

1.5.4.2 Using AJAX to Load Fields

Depending on the number of fields for your content type and the amount of data that those fields contain you may
notice that page loads can take a few seconds to load. AJAX is a method to help decrease load times by allowing the
page to load quickly with minimal data and allowing fields with larger amounts of data to load after the initial page
load. Tripal has this setting enabled by default. but you can disable this feature. Similar to the check box for hiding
fields, there is a check box on the content type edit page labeled Load field using AJAX. Remove the check for box to
disable all AJAX loading of fields and save the content type settings.

Note: You can control AJAX loading and hiding of empty fields differently for each content type.

1.5. Working with Content Types 83

Tripal Documentation, Release 7.x-3.x

1.5.5 Field Specific Permissions

1.5.5.1 Why Field Permissions?

Not all Tripal Fields are created equal. You may have some fields that you don’t want all users to be able to view,
or even to be able to edit. This might be the case for a variety of reasons. Some Chado base tables may have type
fields that you don’t utilize: for example, the contact table. Some of your content types may be configured with a lot
of property fields, with only a subset of them being relevant to an end user. Some fields require prior insertion of data
elsewhere: for example, the Cross-Reference field. Perhaps you have some Chado property fields that are for internal
use only.

Note: If you’re following this guide because you want users to submit data into Chado, consider using Tripal Head-
Quarters (HQ). Tripal HQ provides a user-contributed content control center and administrative toolbox for your Tripal
site. This means that users are able to create whatever Chado content you’d like them, but withhold inserting it into
the database until someone has approved it. Find out more here: https://tripal-hq.readthedocs.io/en/latest/index.html

Simply disabling the display of the formatter won’t prevent the widget from showing up on the submission page,
and besides, you might want site admins to still have access to those fields! Deleting the field will cause them to
re-appear when you press the “Check for New Fields” button! Field Permissions allows you to configure field-specific
permissions so that users contributing content via Chado only see the fields they need to see.

Warning: Because all Tripal Entities are the same base entity type (TripalEntity), configuring field permis-
sions on one bundle will configure it for all bundles. This means, for example, hiding a field on Organism will also
hide it on Analysis.

1.5.5.2 Installing the Drupal Field Permissions module

The module can be enabled directly from Drush with the below command.

drush pm-enable -y field_permissions

You can find the Field Permission module page here: https://www.drupal.org/project/field_permissions and a more
in-depth user guide here: https://www.drupal.org/node/2802067

1.5.5.3 Setting Field-specific Permissions

Let’s assume I want to hide the Cross-Reference field from my users submitting Genome Assembly data, but still want
it available for my administrators.

84 Chapter 1. Tripal v3 User’s Guide

https://tripal-hq.readthedocs.io/en/latest/index.html
https://www.drupal.org/project/field_permissions
https://www.drupal.org/node/2802067

Tripal Documentation, Release 7.x-3.x

First, navigate to the content type field configuration page via Admin –> Structure –> Tripal Content –> Genome
Assembly. For each field we want to hide, we must configure the field instance settings individually. Click Edit for the
Cross Reference field, and scroll down to CROSS REFERENCE FIELD SETTINGS. Select Custom Permissions
and ensure that the user role you set up for submitters can view, but cannot edit, this field.

Once permissions are configured to your liking, click Save Settings.

Warning: Some fields are Required. Do not disable required fields that can’t be null. If you do, users won’t be
able to submit content!

Now, if you submit content as a user with that role, the field will not display on the widgets, but will still appear on
normal content.

1.5.6 Handling Orphaned Entities

It is common for site developers to work directly with Chado, especially as they become more familiar with it. And
sometimes, they may purposefully or accidentally remove data from Chado that is utilized by published Tripal entities.
This results in an entity being “orphaned”. The entity will still have a page on the website but the data about that entity
is no longer available. If this occurs you can easily remove published entities that are “orphaned” by navigating
to Administer > Tripal Content Types and clicking the Unpublish Orphaned Content link. The following page
appears.

1.5. Working with Content Types 85

Tripal Documentation, Release 7.x-3.x

Next, select the content type that has missing data in the Content Type select box. For example, suppose an organism
was removed:

A list of at most 10 entities that are orphaned are shown. This list is just for convenience and does not show all of the

86 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

orphaned entities that will be removed. If the content type has no orphaned entities then nothing is shown. You can
submit a job to clean the orphaned entities by clicking the Unpublish Orphaned Entities button.

If you have automatic job execution enabled then the cleanup will occur automatically. Otherwise you should manually
execute the job on the command-line using Drush as instructed.

1.6 Setup of an Example Site

The following tutorial will walk you through creating content and loading genomic data. This is a good introduction
to Tripal v3.x Content Types and the new Administrative User Interface regardless of whether you intend to store
genomic data in your particular Tripal v3 site. This demonstration uses three extension modules: Tripal Analysis
Blast, Tripal Analysis KEGG, and Tripal Analysis InterPro.

Note: As a rule, extension modules are not documented in the Tripal User’s Guide. You can find documentation for
extension modules that enhance Tripal functionality on the Extension Modules page. However, to provide a functioning
demonstration the three analysis extension modules are described here.

1.6.1 Organisms

Before we can load our data we must first have an organism to which the data will be associated. Chado v1.3 does not
come preloaded with any organisms (although previous version of Chado do). For this tutorial we will import genomic
data for Citrus sinesis (sweet orange), so we must first create the organism.

1.6. Setup of an Example Site 87

https://github.com/tripal/tripal_analysis_blast
https://github.com/tripal/tripal_analysis_blast
https://github.com/tripal/tripal_analysis_kegg
https://github.com/tripal/tripal_analysis_interpro

Tripal Documentation, Release 7.x-3.x

1.6.1.1 Creating an Organism Page

We can add the organism using the Add Tripal Content link in the top administrative menu. The Add Tripal Content
page has several content types already available, including the Organism content type.

Note: Drupal provides it’s own content types such as Article and Basic Page. These content types are referred to as
nodes in Drupal speak. You can add these content types via the Add Content page. Tripal v3 derived content types
are separated from these Drupal content types.

To add a new organism click the Organism link and a form will appear with multiple fields. Fill in the fields with
these values:

88 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Field Name Value
Abbreviation

C. sinensis

Genus Citrus
Species sinensis
Common name Sweet orange
Description Sweet orange is the No.1 citrus production in the world,

accounting for about 70% of the total. Brazil, Flordia
(USA), and China are the three largest sweet orange pro-
ducers. Sweet orange fruits have very tight peel and are
classified into the hard-to-peel group. They are often
used for juice processing, rather than fresh consump-
tion. Valencia, Navel, Blood, Acidless, and other sub-
types are bud mutants of common sweet orange vari-
eties. Sweet orange is considered as an introgression
of a natural hybrid of mandarin and pummelo; some
estimates shows more mandarin genomic background
than pummelo. The genome size is estimated at 380Mb
across 9 haploid chromosomes.

Image

Leave all remaining fields empty and save the page. You should now have an organism page that appears as follows:

1.6. Setup of an Example Site 89

Tripal Documentation, Release 7.x-3.x

Note: The layout of the organism page is provided by the tripal_ds module that was enabled during Tripal installation.
If you decided not to enable that module then your page will look quite different.

This page has three primary sections. A left sidebar that contains a search box and a block titled Navigation. To the
right of the sidebar is the content section. Here the content is divided into two columns. In the first column is a table
of contents listing the “Table of Contents” of the page. Currently this list simply contains the Summary. The second
column contains all of the content about the organism. Clicking the links in the table of contents causes each section
to slide to the top of the page for viewing while all other content slides downward. Users need not scroll the entire
page to see all content. The close link (X) at the top right of each section allows the user to remove sections they may
not want to see and which clutter their view.

There is more information about an organism that does not appear on this page. By default, Tripal will not show fields
that have no data. However, if you prefer, you can change this behavior by configuring the content type to not hide
empty fields. You can find this option by navigating to Structure > Tripal Content Types, and click on the edit link
for the content type. You will find the option to toggle this behavior there.

If you do not like this layout you can change it! One of the benefits for using Drupal is the ability to customize the
entire look and feel of your site. Tripal v3 along with Drupal allow you to reorganize this (and any) page however

90 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

you like. This default layout is provided by the tripal_ds module to help simplify the process of laying out a page.
If you decided not to enable the tripal_ds module then your page will require manual layout. Later in this tutorial
instructions to reorganize and re-theme the Tripal content pages are provided. No programming is required to do this.

1.6.1.2 Load data from NCBI Taxonomy

Tripal makes it easy to import additional information about any organisms within a Tripal site from the NCBI Tax-
onomy database. The importer will only import data for species that you currently have in the Tripal database. The
taxonomic names must match those in the NCBI Taxonomy database. Currently, we only have a single organism (Cit-
rus sinensis) and we will import additional properties for this organism from NCBI but we can return later to import
data for new organisms we may add later. To import additional organism details, navigate to Tripal → Data Loaders
→ Chado NCBI Taxonomy Loader. The following page appears:

Click the checkbox beside the ‘Import taxonomy for existing species’ and click Submit. Now run the submitted job:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

You will see the following output:

Tripal Job Launcher (in parallel)
Running as user 'administrator'

(continues on next page)

1.6. Setup of an Example Site 91

https://www.ncbi.nlm.nih.gov/taxonomy
https://www.ncbi.nlm.nih.gov/taxonomy

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

2017-10-06 15:45:47: There are 1 jobs queued.
2017-10-06 15:45:47: Calling: tripal_chado_ncbi_taxonomy_import()

NOTE: Importing of NCBI taxonomy data is performed using a database transaction.
If the load fails or is terminated prematurely then the entire set of
insertions/updates is rolled back and will not be found in the database

2711 Citrus sinensis

1.6.1.3 Adding New Fields

We have now imported many new properties about the Citrus sinensis organism from NCBI Taxonomy. However,
these properties won’t show up on the page automatically. We need to tell Drupal that our organism pages now have
new property fields for display. To do this, navigate to Structure → Tripal Content Types and in the row for the
Organism content type, click the link titled managed fields. Here we see a list the fields that associated with an
Organism content type. Click the link at the top of the page Check for new fields. You will see that several new fields
have been added.

Drupal now knows about these new fields! But if we were to look at the Citrus sinensis page we would see that the new
properties do not appear. Despite that Drupal knows about the fields it has disabled their display. To enable display
of these fields click the Manage Display tab at the top right of the page. Here all of the fields are organized into the

92 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

structure that they will be displayed on the page. Later in this tutorial a more formal description is provided about how
you use this interface to change the way the page appears. For now, we simply need to get the new fields to be shown.
Scroll to the bottom of the page and the new fields can be seen in the Disabled section.

We can move these new fields out of the Disabled section by clicking on the cross-hair icons to the left of the name
and dragging the field into a section above. Drag these fields into the Summary section underneath the Summary
Table. Notice in the screenshot below that the fields that were once in the Disabled section are now in the Summary
Table section. Click the Save button at the bottom to make all changes final.

1.6. Setup of an Example Site 93

Tripal Documentation, Release 7.x-3.x

Now, if we return to the organism page we will see these new properties were added to the page inside of the Summary
Table.

94 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.6.1.4 Further Customizations

You may not like this arrangement of fields. You may prefer to place these extra fields inside of a new pane rather than
inside of the Summary pane. Perhaps a pane named Additional Details. You can rearrange the order of these fields
and create new panes, as desired by following the more details instructions on the Configure Page Display page of this
tutorial. For example, the following shows these fields organized into a new pane named Additional Details which is
separate from the Summary Pane. Note the table of contents sidebar now lists the Summary and Additional Details
links. When clicked, the pane selected by the user migrates to the top of the page

1.6. Setup of an Example Site 95

Tripal Documentation, Release 7.x-3.x

1.6.2 Analyses

For this tutorial we will later import a set of genes, and their associated mRNA, CDS, UTRs, etc. Tripal’s Chado
loader for importing genomic data requires that an analysis be associated with all imported features. This has several
advantages, including:

• The source of features (sequences) can be traced. Even for features simply downloaded from a database, some-
one else can see where the features came from.

• Provenance describing how the features were created can be provided (e.g. whole genome structural and func-
tional annotation description).

• The analysis associates all of the features together.

To create an analysis for loading our genomic data, navigate to the Add Tripal Content and click on the link: Analysis

The analysis creation page will appear:

96 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here you can provide the necessary details to help others understand the source of your data. For this tutorial, enter
the following:

1.6. Setup of an Example Site 97

Tripal Documentation, Release 7.x-3.x

Form
El-
e-
ment

Value

Name Whole Genome Assembly and Annotation of Citrus Sinensis (JGI)
Pro-
gram,
Pipeline
Name
or
Method
Name

Assembly and Annotation Performed by JGI

Pro-
gram
Ver-
sion

Phytozome v9

Time
Ex-
e-
cuted

For this tutorial just select any date.

Data
Source
Name

JGI Citrus sinensis assembly/annotation v1.0 (154)

Data
Source
URI

http://www.phytozome.net/citrus.php

De-
scrip-
tion
(Set
to
Full
HTML):

<p> Note: The following text comes from phytozome.org:</p> <p>
<u>Genome Size / Loci</u>
 This version (v.1) of the assembly is 319 Mb spread over 12,574 scaf-
folds. Half the genome is accounted for by 236 scaffolds 251 kb or longer. The current gene set (orange1.1)
integrates 3.8 million ESTs with homology and ab initio-based gene predictions (see below). 25,376 protein-
coding loci have been predicted, each with a primary transcript. An additional 20,771 alternative transcripts
have been predicted, generating a total of 46,147 transcripts. 16,318 primary transcripts have EST support
over at least 50% of their length. Two-fifths of the primary transcripts (10,813) have EST support over 100%
of their length.</p> <p> <u>Sequencing Method</u>
 Genomic sequence was generated using a whole
genome shotgun approach with 2Gb sequence coming from GS FLX Titanium; 2.4 Gb from FLX Standard;
440 Mb from Sanger paired-end libraries; 2.0 Gb from 454 paired-end libraries</p> <p> <u>Assembly
Method</u>
 The 25.5 million 454 reads and 623k Sanger sequence reads were generated by a col-
laborative effort by 454 Life Sciences, University of Florida and JGI. The assembly was generated by Brian
Desany at 454 Life Sciences using the Newbler assembler.</p> <p> <u>Identification of Repeats</u>

A de novo repeat library was made by running RepeatModeler (Arian Smit, Robert Hubley) on the genome
to produce a library of repeat sequences. Sequences with Pfam domains associated with non-TE functions
were removed from the library of repeat sequences and the library was then used to mask 31% of the genome
with RepeatMasker.</p> <p> <u>EST Alignments</u>
 We aligned the sweet orange EST sequences
using Brian Haas’s PASA pipeline which aligns ESTs to the best place in the genome via gmap, then filters
hits to ensure proper splice boundaries.</p>

Note: Above, the description is provided as HTML code. However if you enabled the ckeditor module (as instructed
in the Tripal Prerequisites section), you should click the link Switch to plain-text editor found below the Description
field before cut-and-pasting the code above. Normally, you would enter the text free-hand but for this tutorial it is
fastest to cut-and-paste the HTML.

98 Chapter 1. Tripal v3 User’s Guide

http://www.phytozome.net/citrus.php

Tripal Documentation, Release 7.x-3.x

After saving, you should have the following analysis page:

1.6.3 Cross References

For our gene pages and mRNA pages we want to link back to JGI where we obtained the genes. Therefore, we want
to add a database reference for JGI. To add a new external databases, navigate to Tripal → Data Loaders → Chado
Databases and click the link titled Add a Database. The resulting page provides fields for adding a new database:

1.6. Setup of an Example Site 99

Tripal Documentation, Release 7.x-3.x

Enter the following values for the fields:

Field
Name

Value

Database
Name

Phytozome

Descrip-
tion

Phytozome is a joint project of the Department of Energy’s Joint Genome Institute and the Center for
Integrative Genomics to facilitate comparative genomic studies amongst green plants

URL http://www.phytozome.net/
URL
prefix

https://phytozome.jgi.doe.gov/phytomine/portal.do?externalid=PAC:{accession}

The URL prefix is important as it will be used to create the links on our gene pages. When an object (e.g. gene) is

100 Chapter 1. Tripal v3 User’s Guide

http://www.phytozome.net/
https://phytozome.jgi.doe.gov/phytomine/portal.do?externalid=PAC

Tripal Documentation, Release 7.x-3.x

present in another database, typically those database have a unique identifier (or accession) for the resource. If we
want to link records in our database to records in the remote database we need to provide a URL prefix that Tripal
will use to create the URL. Typically a remote database has a standard URL schema by which someone can specify a
unique resource. Often the resource accession is the last word in the URL to allow others to easily build the URL for
any resource. Tripal can take advantage of these type URL schemas via the URL Prefix field.

The URL prefix should be the URL used to identify a resource. Two tokens, {db} and {accession}, can be used in
place of where the database name and accession might be needed to create the URL. If no {db} or {accession} are
provided in the URL prefix then Tripal will append the database name and the accession to the URL prefix to form the
final URL. In this example, the Phytozome URL only requires the accession. The position where that accession will
be placed is indicated with the {accession} token. The {db} token is not needed.

Click Add.

We now have added a new database!

1.6.4 Controlled Vocabularies

Before we proceed with setup of our example genomics site we will want to load the Gene Ontology. This is because
we will be loading a whole genome, genes and transcripts with annotations. These annotations include Gene Ontology
terms. To load the Gene Ontolgoy, navigate to Tripal → Data Loaders → Chado Vocabularies → OBO Vocabulary
Loader. You will see the following page:

The Ontology loader allows you to select a pre-defined vocabulary for loading or allow you to provide your own. If
you provide your own, you give the remote URL of the OBO file or provide the full path on the local web server where
the OBO file is located. In the case of a remote URL, Tripal first downloads and then parses the OBO file for loading.
If you do provide your own OBO file it will appear in the saved drop down list for loading of future updates to the
ontology.

During the Tripal installation portion of this tutorial, several vocabularies were pre-installed for you. The Gene Ontol-
ogy, however, was not. To import the Gene Ontology, select it from the drop-down and click the Import Vocabulary
button. You will notice a job is added to the jobs system. Now manually launch the jobs

1.6. Setup of an Example Site 101

Tripal Documentation, Release 7.x-3.x

drush trp-run-jobs --username=administrator --root=/var/www/html

Note: Loading the Gene Ontology will take several hours.

1.6.5 Genomes and Genes

1.6.5.1 Loading Feature Data

Now that we have our organism and whole genome analysis ready, we can begin loading genomic data. For this
tutorial only a single gene from sweet orange will be loaded into the databsae. This is to ensure we can move through
the tutorial rather quickly. The following datasets will be used for this tutorial:

• Citrus sinensis-orange1.1g015632m.g.gff3

• Citrus sinensis-scaffold00001.fasta

• Citrus sinensis-orange1.1g015632m.g.fasta

One of the new features available in many of the Tripal v3 data loaders is an HTML5 file upload element which
allows administrators and users to upload large files reliably. This removes the requirement in previous versions of
this tutorial to download these files directly on the server and provide a path to the file. Instead, if you have the file on
your current local machine you can now simply upload it for loading.

Another new option in Tripal v3 Data Loaders is the ability to provide a remote path of a file to be loaded. This
completely alleviates the need to transfer large files multiple times and eases the loading process.

1.6.5.2 Loading a GFF3 File

The gene features (e.g. gene, mRNA, 5_prime_UTRs, CDS 3_prime_UTRS) are stored in the GFF3 file downloaded
in the previous step. We will load this GFF3 file and consequently load our gene features into the database. Navigate
to Tripal → Data Loaders → Chado GFF3 Loader.

102 Chapter 1. Tripal v3 User’s Guide

http://tripal.info/sites/default/files/Citrus_sinensis-orange1.1g015632m.g.gff3
http://tripal.info/sites/default/files/Citrus_sinensis-scaffold00001.fasta
http://tripal.info/sites/default/files/Citrus_sinensis-orange1.1g015632m.g.fasta

Tripal Documentation, Release 7.x-3.x

Enter the following:

Field Name Value
File Upload the file name Citrus_sinensis-orange1.1g015632m.g.gff3
Analysis Whole Genome Assembly and Annotation of Citrus sinensis
Existing Organism Citrus sinensis
Landmark Type supercontig
All other options leave as default

Note: The Landmark Type is provided for this demo GFF3 file because the chromosome is not defined in the file, only
the genomic features on the chromosomes. The landmark type is not needed if the GFF3 file has the chromosomes
(scaffolds or contigs) defined in the GFF3 file.

Finally, click the Import GFF3 file button. You’ll notice a job was submitted to the jobs subsystem. Now, to complete
the process we need the job to run. We’ll do this manually:

1.6. Setup of an Example Site 103

Tripal Documentation, Release 7.x-3.x

drush trp-run-jobs --username=administrator --root=/var/www/html

You should see output similar to the following:

2020-10-02 21:53:18
Tripal Job Launcher
Running as user 'admin'

2020-10-02 21:53:18: There are 1 jobs queued.
2020-10-02 21:53:18: Job ID 1310.
2020-10-02 21:53:18: Calling: tripal_run_importer(123)

Running 'Chado GFF3 File Loader' importer
NOTE: Loading of file is performed using a database transaction.
If it fails or is terminated prematurely then all insertions and
updates are rolled back and will not be found in the database

Opening /var/www/html/sites/default/files/tripal/users/1/Citrus_sinensis-orange1.
→˓1g015632m.g.gff3
Opening temporary cache file: /tmp/TripalGFF3Import_aUgoru
Step 1 of 26: Caching GFF3 file...
Step 2 of 26: Find existing landmarks...
Step 3 of 26: Insert new landmarks (if needed)...
Step 4 of 26: Find missing proteins...
Step 5 of 26: Add missing proteins to list of features...
Step 6 of 26: Find existing features...
Step 7 of 26: Clear attributes of existing features...
Step 8 of 26: Processing 135 features...
Step 9 of 26: Get new feature IDs...
Step 10 of 26: Insert locations...
Step 11 of 26: Associate parents and children...
Step 12 of 26: Calculate child ranks...
Step 13 of 26: Add child-parent relationships...
Step 14 of 26: Insert properties...
Step 15 of 26: Find synonyms (aliases)...
Step 16 of 26: Insert new synonyms (aliases)...
Step 17 of 26: Insert feature synonyms (aliases)...
Step 18 of 26: Find cross references...
Step 19 of 26: Insert new cross references...
Step 20 of 26: Get new cross references IDs...
Step 21 of 26: Insert feature cross references...
Step 22 of 26: Insert feature ontology terms...
Step 23 of 26: Insert 'derives_from' relationships...
Step 24 of 26: Insert Targets...
Step 25 of 26: Associate features with analysis....
Step 26 of 26: Adding sequences data (Skipped: none available)...

Done.
Committing Transaction...

Remapping Chado Controlled vocabularies to Tripal Terms...
Done.

Note: For very large GFF3 files the loader can take quite a while to complete.

104 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.6.5.3 Loading FASTA files

Using the Tripal GFF3 loader we were able to populate the database with the genomic features for our organism.
However, those features now need nucleotide sequence data. To do this, we will load the nucleotide sequences for the
mRNA features and the scaffold sequence. Navigate to the Tripal → Data Loaders → Chado FASTA Loader.

Before loading the FASTA file we must first know the Sequence Ontology (SO) term that describes the sequences we
are about to upload. We can find the appropriate SO terms from our GFF file. In the GFF file we see the SO terms that
correspond to our FASTA files are ‘scaffold’ and ‘mRNA’.

Note: It is important to ensure prior to importing, that the FASTA loader will be able to appropriately match the
sequence in the FASTA file with existing sequences in the database. Before loading FASTA files, take special care to
ensure the definition line of your FASTA file can uniquely identify the feature for the specific organism and sequence
type.

For example, in our GFF file an mRNA feature appears as follows:

scaffold00001 phytozome6 mRNA 4058460 4062210 . + .
→˓ID=PAC:18136217;Name=orange1.1g015632m;PACid=18136217;Parent=orange1.1g015632m.g

1.6. Setup of an Example Site 105

Tripal Documentation, Release 7.x-3.x

Note that for this mRNA feature the ID is PAC:18136217 and the name is orange1.1g015632m. In Chado, features
always have a human readable name which does not need to be unique, and also a unique name which must be unique
for the organism and SO type. In the GFF file, the ID becomes the unique name and the Name becomes the human
readable name.

In our FASTA file the definition line for this mRNA is:

>orange1.1g015632m PAC:18136217 (mRNA) Citrus sinensis

By default Tripal will match the sequence in a FASTA file with the feature that matches the first word in the definition
line. In this case the first word is orange1.1g015632m. As defined in the GFF file, the name and unique name are
different for this mRNA. However, we can see that the first word in the definition line of the FASTA file is the name
and the second is the unique name. Therefore, when we load the FASTA file we should specify that we are matching
by the name because it appears first in the definition line.

If however, we cannot guarantee the that feature name is unique then we can use a regular expressions in the Advanced
Options to tell Tripal where to find the name or unique name in the definition line of your FASTA file.

Note: When loading FASTA files for features that have already been loaded via a GFF file, always choose “Update
only” as the import method. Otherwise, Tripal may add the features in the FASTA file as new features if it cannot
properly match them to existing features.

Now, enter the following values in the fields on the web form:

Field Name Value
FASTA file Upload the file named Citrus_sinensis-scaffold00001.fasta
Analysis Whole Genome Assembly and Annotation of Citrus sinensis
Organism Citrus sinensis (Sweet orange)
Sequence type supercontig (scaffold is an alias for supercontig in the sequence ontology)
Method Update only (we do not want to insert these are they should already be there)
Name Match Type Name

Click the Import Fasta File, and a job will be added to the jobs system. Run the job:

drush trp-run-jobs --username=administrator --root=/var/www/html

Notice that the loader reports the it “Found 1 sequences(s).”. Next fill out the same form for the mRNA (transcripts)
FASTA file:

Field Name Value
FASTA file Upload the file named Citrus_sinensis-orange1.1g015632m.g.fasta
Analysis Whole Genome Assembly and Annotation of Citrus sinensis
Organism Citrus sinensis (Sweet orange)
Sequence type mRNA
Method Update only
Name Match Name

The FASTA loader has some advanced options. The advanced options allow you to create relationships between
features and associate them with external databases. For example, the definition line for the mRNA in our FASTA file
is:

>orange1.1g015632m PAC:18136217 (mRNA) Citrus sinensis

106 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here we have more information than just the feature name. We have a unique Phytozome accession number (e.g.
PAC:18136217) for the mRNA. Using the External Database Reference section under Additional Options we can
import this information to associate the Phytozome accession with the features. A regular expression is required to
uniquely capture that ID. In the example above the unique accession is 18136217. Because Tripal is a PHP application,
the syntax for regular expressions follows the PHP method. Documentation for regular expressions used in PHP can
be found here. Enter the following value to make the associate between the mRNA and it’s corresponding accession
at Phytozome:

Field Name Value
External Database Phytozome
Regular expression for the accession ^.*PAC:(d+).*$

Remember, we have the name Phytozome in our External Database drop down because we manually added it as a
database cross reference earlier in the turorial. After adding the values above, click the Import FASTA file button,
and manually run the submitted job:

drush trp-run-jobs --username=administrator --root=/var/www/html

Now the scaffold sequence and mRNA sequences are loaded!

Note: It is not required to load the mRNA sequences as those can be derived from their alignments with the scaffold
sequence. However, in Chado the feature table has a residues column. Therefore, it is best practice to load the
sequence when possible.

1.6.5.4 Creating Gene Pages

Now that we’ve loaded our feature data, we must publish them. This is different than when we manually created our
Organism and Analysis pages. Using the GFF and FASTA loaders we imported our data into Chado, but currently
there are no published pages for this data that we loaded. To publish these genomic features, navigating to Structure
→ Tripal Content Types and click the link titled Publish Chado Content. The following page appears:

Here we can specify the types of content to publish. For our site we want to offer both gene and mRNA pages (these
types were present in our GFF file). First, to create pages for genes select ‘Gene’ from the dropdown. A new Filter
section is present and when opened appears as follows.

1.6. Setup of an Example Site 107

http://php.net/manual/en/reference.pcre.pattern.syntax.php

Tripal Documentation, Release 7.x-3.x

The Filters section allows you to provide filters to limit what you want to publish. For example, if you only want to
publish genes for a single organism you can select that organism in the Organism drop down list. We only have one
organism in our site, but for the sake of experience, add a filter to publish only genes for Citrus sinesis by selecting it
from the Organism drop down. Scroll to the bottom a click the Publish button. A new job is added to the job queue.
Manually run the job:

drush trp-run-jobs --username=administrator --root=/var/www/html

You should see output similar to the following:

Tripal Job Launcher
Running as user 'administrator'

Calling: tripal_chado_publish_records(Array, 12)

(continues on next page)

108 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

NOTE: publishing records is performed using a database transaction.
If the load fails or is terminated prematurely then the entire set of
is rolled back with no changes to the database

Succesfully published 1 Gene record(s).

Here we see that 1 gene was successfully published. This is because the GFF file we used previously to import the
genes only had one gene present.

Now, repeat the steps above to publish the mRNA content type. You should see that 9 mRNA records were published:

Tripal Job Launcher
Running as user 'administrator'

Calling: tripal_chado_publish_records(Array, 13)

NOTE: publishing records is performed using a database transaction.
If the load fails or is terminated prematurely then the entire set of
is rolled back with no changes to the database

Succesfully published 9 mRNA record(s).

Note: It is not necessary to publish all types of features in the GFF file. For example, we do not want to publish
features of type scaffold. The feature is large and would have many relationships to other features, as well as a very
long nucleotide sequence. These can greatly slow down page loading, and in general would be overwhelming to the
user to view on one page. As another example, each mRNA is composed of several CDS features. These CDS features
do not need their own page and therefore do not need to be published.

Now, we can view our gene and mRNA pages. Click the Find Tripal Content link. Find and click the new page titled
orange1.1g015632m.g. Here we can see the gene feature we added and its corresponding mRNA’s.

1.6. Setup of an Example Site 109

Tripal Documentation, Release 7.x-3.x

Next find an mRNA page to view. Remember when we loaded our FASTA file for mRNA that we associated the record
with Phytozome. On these mRNA pages you will see a link in the left side bar titled Database Cross Reference.
Clicking that will open a panel with a link to Phytozome. This link appears because:

• We added a Database Cross Reference for Phytozome in a previous step

• We associated the Phytozome accession with the features using a regular expression when importing the FASTA
file.

All data that appears on the page is derived from the GFF file and the FASTA files we loaded.

1.6.5.5 Customizing Transcripts on Gene Pages

By default the gene pages provided by Tripal will have a link in the sidebar table of contents named Transcripts and
when clicked a table appears that lists all of the transcripts (or mRNA) that belong to the gene. The user can click to
view more information about each published transcript.

110 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Sometimes however, more than just a listing of transcripts is desired on a gene page. You can customize the information
that is presented about each transcript by navigating to the gene content type at Structure → Tripal Content Types
and clicking mange fields in the Gene row. This page allows you to customize the way fields are displayed on the
gene page. Scroll down the page to the Transcript row and click the edit button. The following page should appear.

1.6. Setup of an Example Site 111

Tripal Documentation, Release 7.x-3.x

Open the field set titled Transcript (mRNA) Field Selection to view a table that lists all of the available fields for a
transcript.

112 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

On this page you can check the boxes next to the field that you want to show for a transcript on the gene page. For
this example, we will select the fields Name, Identifier, Resource Type, Anotations, and Sequences (they may not
be in this order on your own site). You can control the order in which fields will be shown by dragging them using the
crosshairs icon next to each one. Scroll to the bottom of the page and click the Save Settings button.

Next return to the gene page, reload it, and click on the Transcripts link. Now you are provided a select box with the
transcript names. When a transcript is selected, the pane below will populate with the fields that you selected when
editing in the Transcript field.

1.6. Setup of an Example Site 113

Tripal Documentation, Release 7.x-3.x

You can return to the Transcript field edit page under the Gene content type at any time to add, remove or change the
order of fields that appear for the transcript.

Note: Transcripts on a gene page can only be customized if all of them are published. If not, the default table listing
is shown.

1.6.6 Importing Publications

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Tripal provides an interface for automatically and manually adding publications.

114 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.6.6.1 Manually Adding a Publication

First, we will manually add a publication. Click the Add Tripal Content link in the administrative menu and then
Publication.

We will add information about the Tripal publication. Enter the following values:

1.6. Setup of an Example Site 115

Tripal Documentation, Release 7.x-3.x

Field
Name

Value

Ti-
tle

Tripal v3: an ontology-based toolkit for construction of FAIR biological community databases.

Vol-
ume

baz077

Se-
ries
Name

Database

Pub-
li-
ca-
tion
Year

2019

Unique
Lo-
cal
Iden-
ti-
fier

Tripal v3: an ontology-based toolkit for construction of FAIR biological community databases.

Pub-
li-
ca-
tion
Type

Journal

Cross
Ref-
er-
ence

Database: PMID

Ac-
ces-
sion

31328773

Pub-
li-
ca-
tion
Date

2019 Jul 22

Ci-
ta-
tion

Spoor S, Cheng CH, Sanderson LA, Condon B, Almsaeed A, Chen M, Bretaudeau A, Rasche H, Jung S,
Main D, Bett K, Staton M, Wegrzyn JL, Feltus FA, Ficklin SP. Tripal v3: an ontology-based toolkit for
construction of FAIR biological community databases. Database. July 2019, 2019: baz077

Au-
thors

Spoor S, Cheng CH, Sanderson LA, Condon B, Almsaeed A, Chen M, Bretaudeau A, Rasche H, Jung S,
Main D, Bett K, Staton M, Wegrzyn JL, Feltus FA, Ficklin SP

Ab-
stract

Community biological databases provide an important online resource for both public and private data,
analysis tools and community engagement. These sites house genomic, transcriptomic, genetic, breeding
and ancillary data for specific species, families or clades. Due to the complexity and increasing quantities
of these data, construction of online resources is increasingly difficult especially with limited funding and
access to technical expertise. Furthermore, online repositories are expected to promote FAIR data princi-
ples (findable, accessible, interoperable and reusable) that presents additional challenges. The open-source
Tripal database toolkit seeks to mitigate these challenges by creating both the software and an interactive
community of developers for construction of online community databases. Additionally, through coordi-
nated, distributed co-development, Tripal sites encourage community-wide sustainability. Here, we report
the release of Tripal version 3 that improves data accessibility and data sharing through systematic use of
controlled vocabularies (CVs). Tripal uses the community-developed Chado database as a default data store,
but now provides tools to support other data stores, while ensuring that CVs remain the central organiza-
tional structure for the data. A new site developer can use Tripal to develop a basic site with little to no
programming, with the ability to integrate other data types using extension modules and the Tripal appli-
cation programming interface. A thorough online User’s Guide and Developer’s Handbook are available at
http://tripal.info, providing download, installation and step-by-step setup instructions.

116 Chapter 1. Tripal v3 User’s Guide

http://tripal.info

Tripal Documentation, Release 7.x-3.x

To complete the page click the Save button at the bottom

1.6.6.2 Import of Publications

Tripal supports importing of publications from remote databases such as NCBI PubMed.

Creation of an importer is an administrative function. A publication importer is created by the site administrator and
consists of a set of search criteria for finding multiple publications at one time. When the importer is run, it will query
the remote database, retrieve the publications that match the criteria and add them to the database. Because we loaded
genomic data for Citrus sinensis we will create an importer that will find all publications related to this species.

First, navigate to Tripal → Data Loaders → Chado Bulk Publication Importers and click the link New Importer.
You will see the following page:

Enter the following values in the fields:

Field Name Value
Remote Database PubMed
Loader Name Pubs for Citrus sinensis
Criteria #1

• Scope: Abstract/Title
• Search Terms: Citrus sinensis
• is Phrase?: checked

1.6. Setup of an Example Site 117

Tripal Documentation, Release 7.x-3.x

Now, click the ‘Test Importer’ button. This will connect to PubMed and search for all publications that match our
provided criteria. it may take a few minutes to complete. On the date this portion of the tutorial was written, over 800
publications were found:

Now, save this importer. You should see that we have one importer in the list:

118 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

We can use this importer to load all publications related to <i>Citrus sinensis</i> from PubMed into our database
(how to load these will be shown later). However, what if new publications are added? We would like this importer
to be run monthly so that we can automatically add new publications as they become available. But we do not need
to try to reload the same publications every time the loader runs each month. We will create a new importer that only
finds publications within the last 30 days. To do this, click the link New Importer. Now, add the following criteria:

Field Name Value
Remote Database PubMed
Loader Name Pubs for Citrus sinensis last 30 days
Days since record modified 30
Criteria #1

• Scope: Abstract/Title
• Search Terms: Citrus sinensis
• is Phrase?: checked

Now, when we test the importer we find only 1 publications that has been added (created) to PubMed in the last 30
days:

1.6. Setup of an Example Site 119

Tripal Documentation, Release 7.x-3.x

Save this importer.

Next, there are two ways to import these publications. The first it to manually import them. There is a Drush command
that is used for importing publications. Return to the terminal and run the following command:

cd $DRUPAL_HOME
drush trp-import-pubs --username=administrator

You should see output to the terminal that begins like this:

NOTE: Loading of publications is performed using a database transaction.
If the load fails or is terminated prematurely then the entire set of
insertions/updates is rolled back and will not be found in the database

Importing: Pubs for Citrus sinensis

The importer will import 100 publications at a time and pause between each set of 100 as it requests more.

Some things to know about the publication importer:

1. The importer keeps track of publications from the remote database using the publication accession (e.g. PubMed
ID).

2. If a publication with an accession (e.g. PubMed ID) already exists in the local database, the record will be
updated.

3. If a publication in the local database matches by title, journal and year with one that is to be imported, then the
record will be updated. Y

120 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

4. Run the newly created Tripal Job to finish:

cd $DRUPAL_HOME
drush trp-run-jobs --user=administrator

The second way to import publications is to add an entry to the UNIX cron. We did this previously for the Tripal Jobs
management system when we first installed Tripal. We will add another entry for importing publications. But first,
now that we have imported all of the relevant pubs, we need to return to the importers list at Tripal → Data Loaders
→ Chado Publication Importers and disable the first importer we created. We do not want to run that importer again,
as we’ve already imported all historical publications on record at PubMed. Click the edit button next to the importer
named Pubs for Citrus sinensis, click the disable checkbox and then save the template. The template should now be
disabled.

Now we have the importer titled Pubs for Citrus sinensis last 30 days enabled. This is the importer we want to run
on a monthly basis. The cron entry will do this for us. On the terminal open the crontab with the following command:

sudo crontab -e

Now add the following line to the bottom of the crontab:

30 8 1,15 * * su - www-data -c '/usr/local/drush/drush -r [DRUPAL_HOME] -l http://
→˓[site url] trp-import-pubs --report=[your email] > /dev/null'

Where

• [site url] is the full URL of your site

• [your email] is the email address of the user that should receive an email containing a list of publications that
were imported. You can separate multiple email addresses with a comma.

• [DRUPAL_HOME] is the directory where Drupal is installed

The cron entry above will launch the importer at 8:30am on the first and fifteenth days of the month. We will run this
importer twice a month in the event it fails to run (e.g. server is down) at least one time during the month.

1.6.6.3 Import from the USDA National Agricultural Library

The instructions for the Tripal publication importer described previously use the the NCBI PubMed database. How-
ever, you can also import publications from the USDA National Agriculture Library (AGRICOLA). However, to use
this repository a few software dependences are required. These include:

• The YAZ library

• PHP support for YAZ

The following instructions are to install the necessary dependencies on an Ubuntu 18.04 LTS.

First install yaz, the yaz development library and the php development library:

sudo apt-get install yaz libyaz5-dev php-dev

Next update the PECL tool and install the PHP yaz library:

sudo pecl channel-update pecl.php.net
sudo pecl install yaz

Next, edit the php.ini files. On Ubuntu 18.04 there are two PHP files:

• /etc/php/7.2/cli/php.ini

1.6. Setup of an Example Site 121

https://www.indexdata.com/resources/software/yaz/
https://www.php.net/manual/en/book.yaz.php

Tripal Documentation, Release 7.x-3.x

• /etc/php/7.2/apache2/php.ini

Add the following line to each file:

extension=yaz.so

Finally, restart the web server so that it picks up the changes to the php.ini file.

sudo service apache2 restart

You can now import publications from Agricola using the same interface as with PubMed.

1.6.7 Functional Annotations

1.6.7.1 Module Setup

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

For this example we will be load functional data for our gene. To do this we will use the Blast, KEGG, and InterPro
extension modules. However, these extension modules are not part of the “core” Tripal package but are available
as separate extensions. Anyone may create extensions for Tripal. These extensions are useful for genomic data and
therefore are included in this tutorial.

To download these modules:

cd $DRUPAL_HOME
drush pm-download tripal_analysis_blast
drush pm-download tripal_analysis_interpro

Now, enable these extension modules:

drush pm-enable tripal_analysis_blast
drush pm-enable tripal_analysis_interpro

For this example, we will use the following files which are available for downloading:

• Citrus_sinensis-orange1.1g015632m.g.iprscan.xml

• Blastx_citrus_sinensis-orange1.1g015632m.g.fasta.0_vs_uniprot_sprot.fasta.out

• Blastx_citrus_sinensis-orange1.1g015632m.g.fasta.0_vs_nr.out

Download these files to the `$DRUPAL_HOME/sites/default/files` directory. To do so quickly run these
commands:

cd $DRUPAL_HOME/sites/default/files
wget http://www.gmod.org/mediawiki/images/0/0c/Citrus_sinensis-orange1.
→˓1g015632m.g.iprscan.xml
wget http://www.gmod.org/mediawiki/images/e/e8/Blastx_citrus_sinensis-
→˓orange1.1g015632m.g.fasta.0_vs_uniprot_sprot.fasta.out
wget http://www.gmod.org/mediawiki/images/2/24/Blastx_citrus_sinensis-
→˓orange1.1g015632m.g.fasta.0_vs_nr.out

Each of these modules provides new fields for both the gene and mRNA content types. To add these new field to
those content types, navigate to Structure > Tripal Content Types and click the manage fields link in the row for

122 Chapter 1. Tripal v3 User’s Guide

http://www.gmod.org/mediawiki/images/0/0c/Citrus_sinensis-orange1.1g015632m.g.iprscan.xml
http://www.gmod.org/mediawiki/images/e/e8/Blastx_citrus_sinensis-orange1.1g015632m.g.fasta.0_vs_uniprot_sprot.fasta.out
http://www.gmod.org/mediawiki/images/2/24/Blastx_citrus_sinensis-orange1.1g015632m.g.fasta.0_vs_nr.out

Tripal Documentation, Release 7.x-3.x

the mRNA content type. Click the link titled Check for new fields. After a few moments the page will refresh and
you will be notified that new fields have been added.

Next, we need to position the new field. Using the skills you learned in the Configuring Page Layout Create two new
Tripal Panes named:

• Blast Results

• Protein Domains

Be sure to:

• Place the new fields into each pane respectively

• Move the Panes out of the disabled section.

• Set the label for each field to Hidden.

The following shows an example of this layout:

1.6. Setup of an Example Site 123

Tripal Documentation, Release 7.x-3.x

The fields are now ready for display once data is added!

Note: If you want both the Gene and mRNA content type to have BLAST, InterPro and KEGG result fields you must
repeat the steps above for both.

Note: Anytime you install a Tripal v3 extension module you should check for new fields, and then place those fields
in the layout. Extension modules often will not do this for you because they do not assume you want these new fields.

1.6.7.2 Adding BLAST Results

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Adding BLAST Databases

Before we load our BLAST results we want to add some external databases. For this tutorial we have protein BLAST
results against NCBI nr and ExPASy SwissProt. We would like the BLAST hits to be clickable such that they link
back to their respective databases. To do this, we must add some additional databases. Navigate to Tripal → Data
Loaders → Chado Databases and click the link titled Add a Database. The resulting page provides fields for adding
a new database. Add two new databases, one for NCBI nr and the other for ExPASy SwissProt.

Use these values for adding the NCBI nr database:

Field Name Value
Name NCBI nr
Description NCBI’s non-redundant protein database
URL http://www.ncbi.nlm.nih.gov/
URL Prefix http://www.ncbi.nlm.nih.gov/protein/

Use these values for adding the SwssProt database:

Field
Name

Value

Name ExPASy Swiss-Prot
De-
scrip-
tion

A curated protein sequence database which strives to provide a high level of annotation, a minimal level
of redundancy and high level of integration with other databases

URL http://expasy.org/sprot/
URL
prefix

http://www.uniprot.org/uniprot/

Configure Parsing of BLAST Results

First, we need to ensure that the BLAST module can properly parse the BLAST hits. To do this, navigate to Tripal
→ Extensions → Tripal Blast Analyses. On this page are configuration settings for the Tripal BLAST Analysis
extension module.

124 Chapter 1. Tripal v3 User’s Guide

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/protein/
http://expasy.org/sprot/
http://www.uniprot.org/uniprot/

Tripal Documentation, Release 7.x-3.x

Within the section titled BLAST Parsing, you can specify a different, more meaningful name for the sequence library
file (a.k.a. database) used for BLASTing. This name will be displayed with BLAST results. You can also provide
regular expressions for parsing BLAST hits. For example, the following is a line for a match from SwissProt:

sp|P43288|KSG1_ARATH Shaggy-related protein kinase alpha OS=Arabidopsis
→˓thaliana GN=ASK1 PE=2 SV=3

Here the hit name is KSG1_ARATH, the accession is P43288, the hit description is Shaggy-related protein
kinase alpha OS=Arabidopsis thaliana and the organism is Arabidopsis thaliana. We need
regular expressions to tell Tripal how to extract these unique parts from the match text. Because Tripal is a PHP
application, the syntax for regular expressions follows the PHP method. Documentation for regular expressions used
in PHP can be found here. The following regular expressions can be used to extract the hit name, the accession, hit
description and organism for the example SwissProt line above:

Element Regular Expression
Hit Name ^sp\|.*?\|(.*?)\s.*?$
Hit Description ^sp\|.*?\|.*?\s(.*)$
Hit Accession ^sp\|(.*?)\|.*?\s.*?$
Hit Organism ^.*?OS=(.*?)\s\w\w=.*$

In this tutorial, we will be adding BLAST results for the two databases we just created: ExPASy SwissProt and NCBI
nr. First, select ExPASy SwissProt from the drop-down menu. A form will appear:

1.6. Setup of an Example Site 125

Tripal Documentation, Release 7.x-3.x

In the form fields, add the following values:

Field Value
Title for the BLAST analysis (leave blank)
Regular expression for Hit Name ^sp\|.*?\|(.*?)\s.*?$
Regular expression for Hit Description ^sp\|.*?\|.*?\s(.*)$
Regular expression for Hit Accession: ^sp\|(.*?)\|.*?\s.*?$
Regular expression for Organism ^.*?OS=(.*?)\s\w\w=.*$
Organism Name (leave blank)

Click Save Settings.

The match accession will be used for building web links to the external database. The accession will be appended to
the URL Prefix set earlier when the database record was first created.

Now select the NCBI nr database from the drop-down. NCBI databases use a format that is compatible with BLAST.
Therefore, the hit name, accession and description are handled differently in the BLAST XML results. To correctly
parse results from an NCBI database click the Use Genbank style parser checkbox. This should disable all other
fields and is all we need for this database. Clikc the Save Settings button.

126 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Create the Analysis Page

Note: It is always recommended to create an analysis page anytime you import data. The purpose of the analysis
page is to describe how the data being added was derived or collected.

Now we can create our analysis page. Navigate to Content → Tripal Content and click the Add Tripal Content link.
This page contains a variety of content types that the site supports. Scroll to the Other section and find the content
type named Blast Results:

Here we can save details about the analysis used to create the BLAST results. Enter the following in the fields that
appear on the page:

1.6. Setup of an Example Site 127

Tripal Documentation, Release 7.x-3.x

Field Value
Name blastx Citrus sinensis v1.0 genes vs ExPASy SwissProt
Descrip-
tion

Citrus sinensis mRNA sequences were BLAST’ed against the ExPASy SwissProt protein database
using a local installation of BLAST on in-house linux server. Expectation value was set at 1e-6

BLAST
Program

blastx

BLAST
Version

2.2.25

Data
Source
Name

Citrus sinensis mRNA vs ExPASy SwissProt

Date Per-
formed

(today’s date)

Click the Save button. You can now see our new BLAST analysis page.

Create a second Analysis page for the results of the NCBI nr BLAST analysis. Use the following values:

128 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Field Value
Name blastx Citrus sinensis v1.0 genes vs NCBI nr
Descrip-
tion

Citrus sinensis mRNA sequences were BLAST’ed against the NCBI non-redundant protein database
using a local installation of BLAST on in-house linux server. Expectation value was set at 1e-6

BLAST
Program

blastx

BLAST
Version

2.2.25

Data
Source
Name

Citrus sinensis mRNA vs NCBI nr

Date Per-
formed

(today’s date)

Import the BLAST XML results

First, we will load BLAST results for our citrus gene vs ExPASy SwissProt. Now that we have our database records
setup and configured and we have our analysis record created, we are ready to import the blast results. To do this,
navigate to Tripal > Data Loaders > Chado BLAST XML results loader. The following page will be presented:

1.6. Setup of an Example Site 129

Tripal Documentation, Release 7.x-3.x

The top section of this page provides multiple methods for providing results file: via an upload interface, specifying
a remote URL or a file path that is local to the server. Most likely, you will always upload or provide a remote URL.
However, we download the file earlier, and stored them here: $DRUPAL_HOME/sites/default/files. So, in
this case we can use the path on the local server. Provide the following value for this form:

Field Value
Server path sites/default/files/Blastx_citrus_sinensis-orange1.1g015632m.g.fasta.0_vs_uniprot_sprot.fasta.out
Analysis blastx Citrus sinensis v1.0 genes vs ExPASy SwissProt (blastall 2.2.25, Citrus sinensis

mRNA vs ExPASy SwissProt)
Database ExPASy SwissProt
BLAST XML File
Extension

out

Query Type mRNA

Note: For the Server path we need not give the full path. Because we downloaded the files into the Drupal directory
we can leave off any preceding path and Tripal will resolve the path. Otherwise we could provide the full path.

130 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Note: Specifying ExPASy SwissProt as the database will allow the importer to use the database configuration settings
we entered earlier.

Clicking the Import BLAST file will add a job which we can manually execute with the following command:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

The results should now be loaded. Now we want to add the results for NCBI nr. Repeat the steps above to add a new
analysis with the following details:

Field Value
Server path sites/default/files/Blastx_citrus_sinensis-orange1.1g015632m.g.fasta.0_vs_nr.out
Analysis blastx Citrus sinensis v1.0 genes vs ExPASy SwissProt (blastall 2.2.25, Citrus sinensis

mRNA vs NCBI nr)
Database ExPASy SwissProt
BLAST XML File Ex-
tension

out

Query Type mRNA

Click the Save button and manually run the job:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

To view results we must find the mRNA that has BLAST hits. For this example, click on the mRNA Search link in
the Data Search block. Search for the mRNA named orange1.1g015615m. Viewing the page, we should now see
BLAST results by clicking the ‘BLAST results’ link in the left table of contents.

1.6. Setup of an Example Site 131

Tripal Documentation, Release 7.x-3.x

Notice, that when viewing the results, the SwissProt matches are links. When clicked they redirect the user to the
SwissProt website where users can find more information about that protein.

132 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Note: The match links are able to link out to SwissProt and NCBI because of the initial setup where we added the
database settings and we set regular expressions for parsing the match accessions.

1.6.7.3 Adding InterProScan Results

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

For this tutorial, these results were obtained by using a local installation of InterProScan installed on a computational
cluster. However, you may choose to use Blast2GO or the online InterProScan utility. Results should be saved in XML
format.

What is InterProScan?

To learn more about InterProScan, please visit https://www.ebi.ac.uk/interpro/

1.6. Setup of an Example Site 133

https://www.ebi.ac.uk/interpro/

Tripal Documentation, Release 7.x-3.x

Create the Analysis Page

Note: It is always recommended to create an analysis page anytime you import data. The purpose of the
analysis page is to describe how the data being added was derived or collected.

Tripal defines the InterPro Results Bundle, which is a specific type of Chado analysis. Create a new record by going
to Content -> Tripal Content -> Add Tripal Content --> InterPro Results.

Fill out the fields as described in the table below.

Field Value
Name InterPro Annotations of C. sinensis v1.0
InterPro Program InterProScan
InterPro Version 4.8
Date Performed Current Date
Data Source Name

C. sinensis v1.0 mRNA

Data Source Version v1.0
Data Source URI n/a
Description Materials & Methods: C. sinensis mRNA sequences

were mapped to IPR domains and GO terms using a
local installation of InterProScan executed on a com-
putational cluster. InterProScan date files used were
MATCH_DATA_v32, DATA_v32.0 and PTHR_DATA
v31.0.

Press the Save button.

Import the InterProScan XML results

Next, we will load InterProScan results for our citrus gene. To do this, navigate to Tripal > Data Loaders > Chado
InterProScan XML results loader. The following page will be presented:

134 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

The top section of this page provides multiple methods for providing results file: via an upload interface, specifying
a remote URL or a file path that is local to the server. Most likely, you will always upload or provide a remote URL.
However, we downloaded the files earlier, and stored them here: $DRUPAL_HOME/sites/default/files. So,
in this case we can use the path on the local server. Provide the following value for this form:

Field Value
Server path sites/default/files/Citrus_sinensis-orange1.1g015632m.g.iprscan.xml
Analysis InterPro Annotations of C. sinensis v1.0
‘Load GO terms to the database’ ‘unchecked’
Query Name RE
Use Unique Name unchecked
Query Type mRNA

In order for GO terms to be imported, the Gene Ontology must be loaded on your site: for this tutorial, we leave the
box unchecked.

Note: For the Server path we need not give the full path. Because we downloaded the files into the Drupal directory
we can leave off any preceding path and Tripal will resolve the path. Otherwise we could provide the full path.

1.6. Setup of an Example Site 135

Tripal Documentation, Release 7.x-3.x

Clicking the Import InterProScan file will add a job which we can manually execute with the following command:

drush trp-run-jobs --username=administrator --root=$DRUPAL_HOME

After the job is run, our InterPro field will be populated on the mRNA page with an annotation diagram:

1.6.7.4 Adding KEGG Results

1.6.7.5 Managing Gene Ontology Annotations

1.7 File Management

1.7.1 User Quotas

Data importers that use the Tripal API and Tripal supported widgets automatically associate uploaded files with users.
If you are allowing end-users to upload files you may want to consider adding quotas to prevent the server storage from
filling. To ensure that users do not exceed the limits of the server a quota system is available. Navigate to Administer
> Tripal > User File Management and click the User Quotas tab to reveal the following page:

136 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

First, the total amount of space consumed by all uploaded files is shown at the top of the page. Initially this will
indicate 0 B (for zero bytes); as users upload files this value will change. You may return to this page in the future to
check how much space is currently used by user uploads. Here you can also specify the default system-wide quota
that all users receive. By default this is set to 64 Megabytes and an expiration of 60 days. Once a file has existed on
the site for 60 days the file is marked for deletion and will be removed when the Drupal cron is executed. The default
of 64MB per user is most likely too small for your site. Adjust this setting and the days to expire as appropriate for
your site’s expected number of users and storage limitations and click the Save button to preserve any changes you
have made.

In addition to the default settings for all users, you may want to allow specific users to have a larger (or perhaps
smaller) quota. You can set user-specific quotas by clicking the Add Custom User Quota link near the bottom of the
page. The following page appears:

1.7. File Management 137

Tripal Documentation, Release 7.x-3.x

Here you must specify the Drupal user name of the user who should be granted a custom quota. This field will auto
populate suggestions as you type to help you find the correct username. Enter the desired quota size and expiration
days and click the Submit button. you will then see the user-specific quota listed in the table at the bottom of the page:

138 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.7.2 User’s Files

User’s with permission to upload files are able to use the Tripal file uploader to add files to the server. The core Tripal
Data Importers use the Tripal file uploader and extension modules may use it as well. You can enable this functionality
for users by Navigating to Admin > People and click the Permissions Tab. next scrol to the Tripal section and set the
Upload Files permissions as desired for your site. The following screenshot shows the permission on a default Drupal
site.

user_guide/./file_upload_permission.png.png

User’s who have the ability to upload files can manage files on their own Account pages.

As described in the previous section, the site administrator can set a system-wide or user-specific default expiration
number of days for a file. This means files will be removed automatically from the server once their expiration data is
set.

1.7. File Management 139

Tripal Documentation, Release 7.x-3.x

Note: Automatic removal of files can only occur if the Drupal cron is setup to run automatically.

Each

1.8 Materialized Views

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

Chado is efficient as a data warehouse but queries can become slow depending on the type of query. To help simplify
and speed up these queries, materialized views can be employed. For a materialized view, a new database table is
created and then populated with the results of a pre-defined SQL query. This allows you to execute a much simpler
and faster query on the materialized view when producing user pages. A side effect, however is redundant data, with
the materialized view becoming stale if not updated regularly.

Tripal provides a mechanism for populating and updating these materialized views. These can be found on the Tripal
→ Data Storage → Chado -> Materialized Views page.

140 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here we see several materialized views. These were installed automatically by the Tripal Chado module. To update
these views, click the Populate link for each one.

This will submit jobs to populate the views with data. Now, run the jobs:

cd $DRUPAL_HOME
drush trp-run-jobs --user=administrator

You can now see that all views are up-to-date on the Materialized Views Page. The number of rows in the view table
is shown.

1.9 Custom Tables

Chado has a large number of tables that can be used for storing a variety of biological and ancillary data. All effort
should be made to use the existing tables for storing data. However, there are times when the current set of tables is

1.9. Custom Tables 141

Tripal Documentation, Release 7.x-3.x

not adequate for storing some data. Tripal allows you to create custom tables in Chado using the Tripal web interface.
The interface for managing custom tables can be found on the Tripal → Data Storage → Chado -> Custom Tables
page.

This page contains a link to add a new custom table (at the top), a search interface to find tables by name, and a listing
of existing tables. You can use this interface to add, edit and remove custom tables. By default, several custom tables
have been created automatically by Tripal modules. These tables hold data managed by the modules. Also, tables used
as materialized views appear in this list as well. They are identified with the Is Mview column.

Warning: You should not remove or edit custom tables that were created programmatically by tripal modules as
it may cause problems with the proper function of the modules that created them.

If you need to create a new table you should follow the following procedure.

1. Plan and design your table. It is best if you follow Chado design style so that your table would easily fit into
Chado.

2. Reach out to the Chado community on the Chado mailing list and ask for advice on your design.

3. If you think your new table would benefit others, consider requesting it be added to a future version of Chado
by adding an issue in the Chado GitHub issue queue.

4. Write your table in the Drupal Schema API array format.

142 Chapter 1. Tripal v3 User’s Guide

https://sourceforge.net/projects/gmod/lists/gmod-schema
https://github.com/gmod/chado/issues
https://www.drupal.org/docs/7/api/schema-api/introduction-to-schema-api

Tripal Documentation, Release 7.x-3.x

5. Navigate to the Tripal → Data Storage → Chado -> Custom Tables page on your site. Click the Add Custom
Table link at the top and cut-and-paste the schema array and click the Add button.

One your table is created, you will want to add data to it. You can do so without any programming by using the Bulk
Loader. The bulk loader expects that your data is housed in a tab-delimited text file and allows you to map columns
from your file to columns in your new custom table. Each row of your file becomes a new record in your table.

Alternatively, if you can write custom loaders using the Tripal API as described in the Developer’s Guide

1.10 Searching

Drupal and Tripal offer a variety of methods for searching biological content on your site. Each has it’s own advantages
and meets different needs. This section provides a description of several different ways to add searching. The two

1.10. Searching 143

Tripal Documentation, Release 7.x-3.x

primary categories of search tools are content-specific and site-wide searching. The site-wide search tools typically
provide a single text box that allow a user to provide a set of key words. The results of the search will span multiple
content types. Often, site-wide searches allow users to quickly find content regardless of the content type. But, they
sometimes lack fine-grained control for filtering. The content-specific search tools provide more fine-grained filtering
for a single content type. Therefore, it is often necessary to provide multiple types of search tools for different content
types.

There are several options for the addition of both site-wide and content-specific search tools which include:

For site-wide searching you can:

• Use the Default Drupal Search

• Use the Search API Module

• Use an independent search tool. Two popular tools that integrate with Drupal include: - ElasticSearch - Apache
Solr

For content-specific searching you can:

• Use the search tools that Tripal provides

• Develop your own search tools using Drupal Views

• Write your own custom search tools using PHP and Tripal’s API functions.

You may not want to consider using multiple search tools, such as a site-wide tool and content-specific tools. The
following sections provide a description for use and setup of some of these different options.

1.10.1 Tripal Content-Specific Search Tools

By default, Tripal will provide a search tool for every Tripal content type. When a new content type is created, a new
search tool is automatically created for that tool.

These search tools will be available at /data_search/[content label], such as /data_search/mrna.

If you have the view_ui module enabled, you can find a list of all search views under Structure –> Views.

1.10.2 Search API Module: Site-Wide Searching

1.10.2.1 Installing Drupal Search API

• Search API: This module provides an interface for much more powerful, efficient searching than the Drupal
core search module. Specifically, it allows you to use more powerful engines such as Elastic Search and Apache
Solr, as well as, advanced features such as facets (for narrowing down search results based on fields or entity
type), fuzzy search, etc.

• Search API Database Service: This module provides a Search Backend/Server defining how your search index
should be stored. Specifically, it just stores the index in your current drupal database.

Install the Search API and Database search modules as you would any other Drupal module. This can be done
using Drupal’s module installation page as shown in the screenshot below. For installation instructions reference the
Drupal.org Tutorial.

Alternatively, installation can be accomplished on the command-line by executing the following drush commands
inside of the Drupal directory:

drush pm-enable search_api
drush pm-enable search_api_db
drush pm-enable search_api_views

144 Chapter 1. Tripal v3 User’s Guide

https://www.drupal.org/project/search_api
https://www.drupal.org/project/search_api_elasticsearch
https://www.drupal.org/project/search_api_solr
https://www.drupal.org/project/search_api_solr
https://www.drupal.org/project/search_api_db
https://www.drupal.org/documentation/install/modules-themes/modules-7

Tripal Documentation, Release 7.x-3.x

Fig. 1: An example search with the default mRNA content type. Results are sortable by clicking the column name.

Fig. 2: Screenshot Modules enable page with Database Search, Search API and Search views enabled.

1.10. Searching 145

Tripal Documentation, Release 7.x-3.x

1.10.2.2 Define your Search Backend/Server

This tutorial covers using a basic Drupal database storage backend for your search. For large sites, it is recommended
to use Elastic Search or Apache Solr. First, we need to tell the Search API where we want our index stored. Navigate,
to the configuration page for the Search API. You can either click on the Configure link shown in the above screenshot
or navigate to Configuration > Search API through the administrative toolbar. You should see the following
screen:

Before proceeding, consider deleting the “Default node index”. We don’t need it. Next, click the Add Server link.
We are configuring a basic drupal database search server we do not need to install any third-part software or set-up an
external server. Instead, fill out the configuration form to tell the Search API to use its own database to store the search
index. Give this server the name “Drupal Database” and select “Database service” from the Service Class drop down.
In the Database Service section, select “Search on parts of a word.” If the search is slow due to this feature, then it
is an indicator that your site should use a different service class (ie: Elastic Search or Apache Solr). Click “Create
Server” to finish configuring the Search backend.

You should see the following screen–assuming all went well. Click on Search API link at the top of the screen (circled
in the screenshot below) to return to the Search API configuration screen.

1.10.2.3 Define a Search Index

Now that we have created a server where the Search API will store our index, we have to define the index itself. On the
Search API Configuration page click on the Add index link. The resulting page appears in the following screenshot.
Name your index something descriptive. Consider including the word “search” somewhere in the name as this name
will be used when setting up the search form/listing (view). For example, enter the name “Tripal Content Search.”
Next, select “Tripal Content” as the Item Type. The item type defines what content types should be indexed. One
thing to keep in mind, is that the Search API currently does not support multi-entity (ie: Both Tripal and Node content)
search in the same index without the Search API Multi-index Search extension module. Notice that we didn’t check
any of the Bundles. By not selecting bundles, this ensures that all Tripal Content will be indexed by the search.
Finally, select from the Server dropdown the server created in the previous step and click the Create Index button.

Next we need to configure which fields should be indexed. You will be presented with a very long list of fields (the
length is dependent on how many Tripal Content types you have). First, scroll to the bottom of the list and expand
the Add Related Fields fieldset. If you are interested, add any additional fields first before checking boxes of fields
above. Otherwise it may cause you to lose selection you’ve already made. Next, check the box beside each field you
would like to be searched. Unfortunately, the interface does not indicate which fields are used per content type. Save
your selection.

The first few fields will be present for all Tripal Content Types (ie: Content Id, Type, Bundle, etc, as shown in the blue
box of the screenshot below), Notice, that for some checked fields there is a boost drop-down. The boost drop-down
influences the “relevance” that a search result will have. By increasing the boost for the title indicates “if the user’s

146 Chapter 1. Tripal v3 User’s Guide

https://www.drupal.org/project/search_api_multi

Tripal Documentation, Release 7.x-3.x

1.10. Searching 147

Tripal Documentation, Release 7.x-3.x

148 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

keywords are in the title it is more likely this content is the one they’re looking for”. Because we want titles and
contnet types (i.e. bundles) highly searchable, set the boost 5 for these (see screenshot below).

After the first set of general fields, we see the list of content type specific fields. Select fields that are appropriate for
your own site and content. For full searchability, select most (if not all) of these fields. Keep in mind the number of
fields selected affects the size of your index. If you know there is no useful information in a given field then do not
select it. You can return later and edit the selected fields at a later date (although it does require re-indexing your site).
The most important consideration at this point is what boost to apply to the various fields. As a rule of thumb, give
a modest boost (but not as high as the title; e.g. set a boost of 3) for name fields and a default boost otherwise. You
may want to apply a negative boost to fields users are extremely unlikely to search (but that you may want to use in
facets) or that are likely to produce false positives (e.g.: analysis program version). Once you are done, click on “Save
Changes”.

After saving our fields we are redirected to the Filters tab. Finally, (last step for creating the index!), pick the extra
features you would like supported. For now we will ignore the Data Alterations section. However, we will set some
items in the Processors section. Keep in mind that the order you select processors is important (i.e.: if you have html
filter after highlighting then it will remove your highlighting). We would like to provide case-insensitive searching
with searched words highlighted. To do this, select Ignore case, HTML Filter and Highlighting in that order. You
may want to add Tokenizer if you are indexing any long text fields because errors can occur if the default tokenize
can sometimes fail with long words. Click “Save Configuration”.

Your index is now scheduled for building! Depending upon the amount of content you have, this could take awhile as
it will only index 50 pages of Tripal content per Drupal Cron run. If you click the view tab you can see the progress
on the indexing process. You can return to this screen in the future from the main Search API configuration page and
clicking on the name of the index.

1.10. Searching 149

http://tripal.info/tutorials/v3.x/installation/job-automation

Tripal Documentation, Release 7.x-3.x

150 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.10. Searching 151

Tripal Documentation, Release 7.x-3.x

1.10.2.4 Creating a Search Interface for your users

At this point you should have an index for your Tripal Content. However, you still have not created any functionality
for end users—the data might be indexed, but they can’t search it, yet. To create the Search page we are going to use
views. Start by going to the Views Administration UI (Structure > Views) and click on Add new view.

Name it something descriptive (e.g. Search Biological Data) as this will show up in the administrative listing. For
the view type (the drop-down beside Show) select the name of the index you created in the last step (e.g.: Tripal
Content Search). Name the page something helpful to the user (avoid the word Tripal and describe the data instead;
e/g.: “Search Biological Data”) and then change the path (e.g. search/biological-data). Click Continue &
edit.

Next, will appear is the Edit Views UI which can be intimidating, even if you’ve been introduced to it before. With

152 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.10. Searching 153

Tripal Documentation, Release 7.x-3.x

that in mind the following screenshot attempts to orient you to the parts of the UI we will use in reference to a search
form/results. This tutorial will address Fields, Filters and Sort Criteria. It is not necessary to understand more except
to point out that you should focus on the left side of the UI when looking for the sections discussed below.

Note: Make sure to save your view periodically by clicking on the “Save” button at the top of the page.

1.10.2.5 Configuring What is displayed for each Search Result

First, we are going to change what is displayed for each result. By default just the unique identifier is displayed which
of course is not useful to the user. We want to hide that field by clicking on its name, Indexed Tripal Content: Tripal
content id which opens the configuration pop-up and then checking Exclude from display. Since we will be using
this field to create our link, we also want to change the Thousands marker to -None-. Click Apply (all displays) to
save these changes.

Next, click on the Add button beside the fields title to open the Add Fields pop-up shown in the next screenshot. For
this tutorial our search results are going to include the title linked to the content and the highlighted “context” of the
search. To add the title, scroll through the fields and click the checkbox beside Indexed Tripal Content: Title. Be
sure the item description reads Tripal content “title” property as there may be other title fields (e.g. for publications).
Click Apply (all displays) to add this field to the view.

154 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.10. Searching 155

Tripal Documentation, Release 7.x-3.x

Next, the configuration form for the field is shown. We do not want a label so uncheck the box titled Create a label.
We want our title to appear as a link to the content, so expand the Rewrite Results field set, check Output this field
as a link and set the link path to bio_data/[id]. This uses tokens to fill in the unique identifier and use it to create
the path to the entity for each search result. Click the Apply (all displays) button to save these settings.

Next, we want to add the highlighted search context. To do this click on the Add button again but this time set the
Fields drop-down to Search and check Search: Excerpt. Again, click the Apply (all displays) button to continue to
the configuration pane. On configuration, again, remove the label and apply the settings.

On the resulting page, be sure to uncheck the box Create a label just as you did for the Title.

Now that we have a title and excerpt in our Fields section, if you click on the Update Preview button you will see a
list of titles for your content and then emptiness underneath each title since there was no keyword entered yet so an
excerpt could not be generated.

1.10.2.6 Adding the Keywords Search Box

Click on the Add button beside Filter Criteria and in the resulting pop-up, select Search for the filter and then check
Search: Fulltext Search. Click the Apply (all displays) button to add the filter.

In order to let the users see a field for searching, we need to expose this filter. We do that by clicking the checkbox be-
side Expose this filter to visitors. . . on the filter configuration form. We also want to change the Label to Keywords.
Other then those two changes, the defaults will work so click the Apply (all displays).

Save your view and navigate go to the new search page you created with this new view. The page will be accessible at
the URL http://[your-site-url]/search/biological-data. You will see a text box titled Keywords
and if you enter a valid keyword and click Apply then filtered results with context highlighting will appear!

156 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.10. Searching 157

Tripal Documentation, Release 7.x-3.x

158 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.10.2.7 Sort by “Relevance”

Next, we want to sort our results. To do this, return to the view configuration page. Click on the Add button beside
Sort Criteria and in the pop-up select Search in the Filter drop-down. Next, check the Search: Relevance field.
Apply it and configure it to Sort descending so that higher scoring results are shown first. Apply the the configuration
settings.

1.10.2.8 Only Show results when user clicks Search

Finally, we do not want search results to automatically appear. We want the user to click the Apply button on the
search form first. To do this use the right-side of the Views UI to expand the Advanced field set and under Exposed
Form click on Exposed form Style: Basic. Change the setting to Input Required and click Apply. In the following
configuration page change the Submit button text to “Search”, and uncheck Expose Sort order.

Now Save your view -You’re Done!

1.10. Searching 159

Tripal Documentation, Release 7.x-3.x

1.10.3 Tripal Elasticsearch Module

Tripal Elasticsearch is an extension module created by the Staton Lab at the University of Tennessee that integrates
the Elasticsearch search engine with Tripal sites. By enabling the module, you are provided with a set of tools to index
and search your Tripal 3 or Tripal 2 site. It provides an easy to set up site wide search and gene search blocks out
of the box. Tripal Elasticsearch also provides support for Cross-site querying, which allows users to search multiple
websites in a fast and asynchronous manner in one query.

To enable Tripal Elasticsearch on your site, you must install an Elasticsearch instance, enable the Tripal Elasticsearch
module, and use it to index your site’s data. For documentation on how to install and configure Tripal Elasticsearch,
please visit the Github repository.

1.11 Job Management (Tripal Daemon)

Note: Remember you must set the $DRUPAL_HOME environment variable to cut-and-paste the commands below.
See see DRUPAL_HOME Variable

The Tripal Daemon module is meant to provide a simple means of creating a robust command-line-driven, fully
bootstrapped PHP Daemon. It uses the PHP-Daemon (https://github.com/shaneharter/PHP-Daemon) Library to create
the Daemon (via the Libraries API) in order to not re-invent the wheel. It allows you to execute Jobs submitted to
Tripal without using cron. It provides a faster user experience for running jobs. Prior to Tripal v3, the Tripal Daemon
module was an extension module. It was integrated into the core Tripal package.

1.11.1 Features

• Provides a Drush interface to start/stop your Daemon.

• Your daemon starts in the background and is detached from the current terminal.

• Daemon will run all Tripal Jobs submitted within 20 seconds.

• A log including the number of jobs executed, their identifiers and results.

• Lock Files, Automatic restart (8hrs default) and Built-in Signal Handling & Event Logging are only a few of
the features provided by the Daemon API making this a fully featured & robust Daemon.

160 Chapter 1. Tripal v3 User’s Guide

https://github.com/statonlab
https://www.elastic.co/products/elasticsearch
https://github.com/tripal/tripal_elasticsearch
https://github.com/shaneharter/PHP-Daemon

Tripal Documentation, Release 7.x-3.x

1.11.2 Installation

The Tripal Daemon requires the Libraries API module. You can easily download and install this module using the
following drush commands:

drush pm-download libraries
drush pm-enable libraries

Next, we need the PHP-Daemon Library version 2.0. You must download the PHP-Daemon Library and extract it in
your sites/all/libraries directory. The folder must be named “PHP-Daemon”. The following commands
can be used to do this:

cd $DRUPAL_HOME/sites/all/libraries
wget https://github.com/shaneharter/PHP-Daemon/archive/v2.0.tar.gz
tar -zxvf v2.0.tar.gz
mv PHP-Daemon-2.0 PHP-Daemon

Next, install the Drush Daemon API module.

drush pm-download drushd
drush pm-enable drushd

Finally, enable the Tripal Daemon module. This module comes with Tripal v3.

drush pm-enable tripal_daemon

1.11.3 Usage

Start the Daemon

drush trpjob-daemon start

Stop the Daemon

drush trpjob-daemon stop

Check the status

drush trpjob-daemon status

List the last 10 lines of the log file:

drush trpjob-daemon show-log

List the last N lines of the log file:

drush trpjob-daemon show-log --num_lines=N

Set N to the number of lines you want to view.

1.12 Web Services

1.12. Web Services 161

https://www.drupal.org/project/libraries
https://github.com/shaneharter/PHP-Daemon
https://www.drupal.org/project/drushd

Tripal Documentation, Release 7.x-3.x

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

1.12.1 Overview

New in Tripal v3 are RESTful web services. These web-services are designed to support the following:

1. Allow end-users to access data programmatically using any language of their choice.

2. Allow Tripal sites to share data among themselves.

Tripal v3 now comes with a tripal_ws module that provides web services. Once enabled, any Tripal v3 site instantly
provides a RESTful web service that can access all publicly available data. Additionally, web services for Tripal are
meant to be:

1. Fully discoverable

2. Searchable

3. Provide access to the same data as that which appears on the visible content pages.

4. Adjustable via Drupal’s content management interface (i.e. no programming required for existing content)

5. Provide a programmers API for easy addition of new content.

6. Share data the way scientists expect to see it.

7. Use controlled vocabularies to ensure maximal interoperability.

Within the current v3.0 release of Tripal web services are limited to read-only access of already publicly available
content. For the future the following is planned for web services:

1. Authenticated data management: creation, deletion and editing of resources via the API.

2. Full implementation of the Hyrda Core Vocabulary specification to provide full discover-ability.

1.12.2 Enable Web Services

To enable web services, simply install the tripal_ws module, either using the module installation interface within
Drupal’s administrative pages, or on the command-line using Drush:

cd $DRUPAL_HOME
drush pm-enable tripal_ws

1.12.3 Exploring Web Services

Once enabled, web services are immediately available on your site at the URL http://[your.site.name]/
web-services/ (replace [your.site.name] with the address and path of your Tripal site). Web services are meant to
be accessed programmatically, but they can be easily explored using a web browser such as with the Firefox browser
and JSONView extension enabled. For example, the following screen shot shows an example Tripal site with the data
loaded following the Setup of an Example Genomics Site instructions of this User’s Guide.

162 Chapter 1. Tripal v3 User’s Guide

https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.hydra-cg.com/spec/latest/core/
https://www.mozilla.org/en-US/firefox/
https://jsonview.com/

Tripal Documentation, Release 7.x-3.x

This initial resource “home page” of the web services returns results in JSON format. When using the JSONView
extension within Firefox you can explore web services by clicking the links that are present in the browser.

1.12.4 Structure of a Web Service Response

The initial response in JSON is in the JSON-LD format where the LD means Linked Data. For example:

{
"@context": {,
"rdf": "http://www.w3.org/1999/02/22-rdf-syntax-ns#",
"rdfs": "http://www.w3.org/2000/01/rdf-schema#",
"hydra": "http://www.w3.org/ns/hydra/core#",
"dc": "http://purl.org/dc/dcmitype/",
"schema": "https://schema.org/",
"local": "http://localhost/cv/lookup/local/",
"vocab": "http://localhost/web-services/vocab/v0.1#",
"EntryPoint": "vocab:EntryPoint",
"content": {

"@id": "vocab:EntryPoint/content",
"@type": "@id"

}
}
"@id": "http://localhost/web-services",
"@type": "EntryPoint",
"content": "http://localhost/web-services/content/v0.1"

}

A notable component of JSON-LD is the @context sub array. It is within this @context section that the “meaning” of
the data becomes apparent and where the Linked Data is implemented. Tripal’s use of linked data is to take advantage
of controlled vocabularies or otologies to unambiguously identify the meaning of each element of the response. By
using controlled vocabularies to qualify all data, it becomes possible to exchange data between sites or within a client
program while limiting confusion as to the meaning of the data. Therefore, words that are used as the keys key/value
pairs will always be defined in the @context section. For example, all of the vocabularies whose terms are used to
qualify data on the site are identified in the @context section with URLs. Some of these vocabularies include: rdf,
rdfs, hydra, schema, etc.

There are two other special keys used in the JSON-LD response. These are the @id and @type keys. The @id
indicates the unique URL for this resource and becomes a unique name for the resource. In the example screenshot

1.12. Web Services 163

http://www.json.org/
https://json-ld.org/

Tripal Documentation, Release 7.x-3.x

above, the @id of the initial page of web services is http://localhost/web-services. This URL will
always refer to the initial page for Tripal web services on the given site. The @type identifier specifies what type
of resource this URL provides. In this example, the type is EntryPoint. If a client program is unsure as to what an
EntryPoint is, then that information is provided in the @context section. The following line indicates that the term
EntryPoint expands to the vocabulary term: vocab:EntryPoint

"EntryPoint": "vocab:EntryPoint",

Here we learn tha the term EntryPoint belongs to the vocab resource. If we look at the vocab entry in the @context
array then we can find a link to that resource. A human can follow that link to examine the vocab resource and find
the term that it provides. A client program can use that information to uniquely identify the term. By default, Tripal
provides the vocab vocabulary which uses an implementation of the Hydra Vocabulary.

Finally, all other entries in the JSON-LD response are key/value pairs that provide properties about the resource. In
the example above, only the content property is available. A property can be a scalar value (i.e. number, character
string) or a link to another resource.

1.12.5 Primary Services

By default, the only resource that Tripal provides at the initial response level is the content resource. Any resource
at this level is hereafter referred to as primary service. Tripal is design to allow new web-services to be added to it.
These will be more formally described in the Tripal v3 Developer’s Handbook. In short, a primary service provides
a variety of data and services for related content and function. Each primary resource has a version number to help
ensure backwards compatibility as new web services are developed and updated. For example, the default content
service currently has a version of v0.1:

"content": "http://localhost/web-services/content/v0.1"

1.12.6 The Content Service

The content service provided by Tripal shares all publicly available content. The content that appears on a page is
the same content that appears in web services. A major change in the design of Tripal from v2 to v3 is that all data
is organized via controlled vocabularies. The following diagram demonstrates how this is implemented. For example
the mRNA term comes from the Sequence Ontology. It’s unique term accession is SO:0000234. Every content type
in Tripal consists solely of a type (e.g. mRNA or SO:0000234), it’s associated label (e.g. mRNA) and a numeric id
unique to each Tripal site. The ID is what uniquely identifies every content in Tripal. Each unique content with these
three attributes is referred to as an Entity. All other data associated with a given entity are called Fields. Example
fields for an mRNA content type may be the name of the mRNA, a unique name, the coding sequence, the coordinates
on the reference genome, etc. In the diagram below, these fields are the rectangular boxes that jut out of the mRNA
entity. These fields can be “attached” to an entity by Tripal and data can come from any storage backend. The data
that appears on a page and the data in the content service is taken from the same entity and therefore end-users and
clients have access to the same data.

164 Chapter 1. Tripal v3 User’s Guide

https://www.hydra-cg.com/spec/latest/core/
http://www.sequenceontology.org/

Tripal Documentation, Release 7.x-3.x

1.12.7 Content Type Listing

When the content service is accessed, the response is always a listing of all available content types on the site. Site
administrators can create new content types by following the Create Content Types section of this tutorial. By default,
Tripal is installed with several commonly used content types, but new ones can be created as needed for the site.
Whenever a new content type is created it immediately is available via the content service, and these content types can
be found at the path: /web-services/content/v0.1. Below is an example screenshot of the resulting JSON
from an example site:

1.12. Web Services 165

Tripal Documentation, Release 7.x-3.x

Note that the @type for this listing is a Collection and the label is Content Types. Each content type has a unique
@id, a @type indicating the term that describes it and a brief description. The @id serves as a URL to obtain further
details about that content type. Also, notice in the above screenshot that the @context section is minimized, but as
usual, each of the terms used in the key/value pairs are fully qualified in that section. This JSON-LD response also
indicates the total number of content types available.

1.12.8 Content Type Members (Entities)

The members or entities that belong to a content type are found at the path: /web-services/content/v0.1/
{name} where {name} is the name of the content type. The {name} field must be identical to the label field from
the content type listing shown previously. For example, the mRNA content type path would be /web-services/
content/v0.1/mRNA. This resource provides a listing of all members for that content type. The following shows
the response for an mRNA listing:

166 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Note that the @type is also a Collection byt the label is ‘mRNA collection’. To maintain a small response, the results
of content member listings is usually paged such that only a subset of members is shown. In this example, there are
8032 mRNA entities available, but only 25 are shown. Notice the view term. It contains several sub elements named
first, last and next. These provide navigation links that can be used by a client application to iterate through all entities.
The structure of these links is as follows:

/web-servies/content/v0.1/{name}?page={page}&limit={limit}

A client application can therefore navigate through the list of entities by substituting the {name} of the content type,
the desired {page} to show (the first page is always 1) and the number of records to show as specified by {limit}. If a
client wanted to retrieve the IDs of all 8032 mRNA of this example, then the following path could be used:

/web-servies/content/v0.1/mRNA?page=1&limit=8032

1.12.9 Content (Entity) Resource

Each entity is accessible via the path: /web-services/content/v0.1/{name}/{id}. Here {name} contin-
ues to refer to the name of the content type (e.g. mRNA) and {id} refers to the unique numeric ID for the entity. In
this example an mRNA entity would result in a JSON-LD response like the following:

1.12. Web Services 167

Tripal Documentation, Release 7.x-3.x

In the JSON shown above, note that all of the key/value pairs used are referenced in the @context section Also, notice
that some key/value pairs contain data while others contain URLs. Tripal is optimized to not load every attribute.
For example, sequence data for some content type may be large. By providing a URL for the data, it keeps the
response small but allows clients to access that information via the provided URL. For example, if the URL for the
sequence_coordinate attribute were followed the following response could be seen:

168 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

Here the client can obtain the necessary information about the coordinates on the genome for this particular mRNA
entity.

1.12.10 Searching for Content

Currently, Tripal provides the ability to search for content via web services by crafting URLs on content type members
pages. By default, the path for content type listings is:

/web-services/content/v0.1/{name}

Where {name} is the label assigned to the content type (See the Content Type Members section above). Using this
path, clients filter content to a specific content type. But further refinement is possible. As a reminder, each member
(or entity) on the content type members collection appears similar to the following:

{
"@id": "http://localhost/web-services/content/v0.1/mRNA/691468",
"@type": "mRNA",
"label": "LOC_Os01g01010.1",
"ItemPage": "http://localhost/bio_data/691468"

},

When retrieving the data for a specific entity something similar to the following (for our mRNA example) may be
seen:

"label": "LOC_Os01g01010.1",
"ItemPage": "http://localhost/bio_data/691468",
"type": "mRNA",
"organism": {

"label": "<i>Oryza sativa</i>",
"genus": "Oryza",
"species": "sativa"

},
"name": "LOC_Os01g01010.1",
"sequence": "http://localhost/web-services/content/v0.1/mRNA/691468/Sequence",
"sequence_length": "3017",
"sequence_checksum": "019338bdd66c9fcf951439e9368046f9",
"time_accessioned": "2017-05-08 23:31:39.792073",
"time_last_modified": "2017-05-08 23:31:39.792073",

(continues on next page)

1.12. Web Services 169

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

"protein_sequence": "http://localhost/web-services/content/v0.1/mRNA/691468/
→˓Protein+sequence",
"sequence_coordinates": "http://localhost/web-services/content/v0.1/mRNA/691468/
→˓Sequence+coordinates",
"relationship": "http://localhost/web-services/content/v0.1/mRNA/691468/relationship",
"identifier": "LOC_Os01g01010.1"

As another reminder, when any of these attributes have a URL then further information about that attribute is obtained
by following the URL. In the example below, the relationship term yields results similar to the following:

{
"@id": "http://localhost/web-services/content/v0.1/mRNA/691468/relationship/0",
"@type": "relationship",
"clause_subject": {

"type": "mRNA",
"name": "LOC_Os01g01010.1",
"identifier": "LOC_Os01g01010.1"

},
"relationship_type": "part_of",
"clause_predicate": {

"type": "gene",
"name": "LOC_Os01g01010",
"identifier": "LOC_Os01g01010"

},
"clause": "The mRNA, LOC_Os01g01010.1, is a part of the gene, LOC_Os01g01010."

},

Here we see information that describes the relationship of the mRNA with its parent gene. Almost all of the key
value pairs shown in the responses above can be used to filter results. But, attention must be paid as to the level that
each attribute appears. For example, in the initial entity response above, the organism attribute has several sub terms
that include genus, species and label. The organism term appears as a first-level term and genus, species and label
appear as a second-level term. For relationships, the relationship is the first-level term but that term has a URL! Tripal
does not support filter by URLs. However, we can use the terms from the results of that URL in our filter. Thus, the
clause_subject, relationship_type and clause_predicate becomes a second-level terms, and within the clause_subject,
the type, name and identifier become third-level terms.

You can easily search for specific entities by knowing these first, second, third, etc. -level terms. The path for searching
is as follows:

/web-services/content/v0.1/{name}?{first-level}[,{second-level},...,{n-th
level}]={value}[;{operator}]

Here, {name} again refers to the content type name (e.g. mRNA). The {first-level} placeholder refers to any term
that appears at the first level. Refinement can occur if a term has multiple sublevels by separating those terms with
a comma. The {value} placeholder should contain the search word. The {operator} placeholder lets you specify the
operator to use (e.g. greater than, less than, starts with, etc.). The {operator} is optional and if not included all searches
default to exact matching. As an example, the organism term has sever second-level terms. If we wanted to filter all
mRNA to include only those from the genus Oryza we could construct the following URL:

/web-services/content/v0.1/mRNA?organism,genus=Oryza

Multiple search criteria can be provided at one time, by repeating the search construct as many times as needed and
separating with an ampersand character: &. For example, to filter the mRNA to only those from Oryza sativa the
following URL would be constructed:

/web-services/content/v0.1/mRNA?organism,genus=Oryza&organism,species=sativa

The examples provided thus far expect that you are searching for exact values. However, you can specify different

170 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

search operators such as the following:

• Numeric Values

– equals: eq

– greater than: gt

– greater than or equal to: gte

– less than: lt

– less than or equal to: lte

– not equal to: ne

• Text values

– equals: eq

– contains: contains

– starts with: starts

Following the path format specified above we set the operator. For example, We can use the label as our second-level
search term and require that it start with Oryza to find all of the mRNA that belong to the genus Oryza:

/web-services/content/v0.1/mRNA?organism,label=Oryza;starts

Finally, you can control ordering of the results by constructing a PATH following this format:

/web-services/content/{name}?{search filter}&order={term}|{dir}[;{term}|{dir}.
..]

Here {search filter} represents the filtering criteria as defined above (keeps the path format from getting extremely long
in this document), {term} represents the full term “path” which if it has multi-level terms those levels are separated
by a comma (e.g. organism,genus); and {dir} represents the direction of the order and can be ASC or DESC for
ascending and descending sorting respectively. You may order results by as many terms as needed by separating them
with a semicolon. The order in which the terms are provided will dictate which term gets sorted first. For example,
supposed we want to search for all mRNA within the genus Oryza but order them by the species name. The following
URL construct would suffice:

/web-services/content/mRNA?organism,genus=Oryza&order=organism,species|ASC

To demonstrate multi term sorting, we could try to sort by the Genus as well, although, because we filtered by the
genus that would be a useless sort, but it demonstrates use of multiple sort criteria:

/web-services/content/mRNA?organism,genus=Oryza&order=organism,genus|ASC;
organism,species|ASC

1.12.11 Searching Limitations

The ability to search by any term for any content type creates a powerful mechanism to find almost entity. However
there are two primary limitations:

1. Not all fields attached to an entity are conducive for searching. Images can be attached to entities, references to
other websites, etc. In these cases the search functionality for those fields has not been implemented. Unfortu-
nately, Tripal v3 does not yet provide a listing of which fields are not searchable. That support will be coming
in the future.

2. The format for constructing a search URL is equivalent to an AND operation. For example, you can filter by
genus and species but not by genus or species. The addition of search criteria adds additional AND filters.

1.12. Web Services 171

Tripal Documentation, Release 7.x-3.x

1.12.12 Hiding or Adding Content

It is relatively easy to hide or add content to web services. The ‘Configuring Page Display’ tutorial walks the user
through the steps for adding fields to a page for display, removing them and organizing the placement of those fields
on the entity’s page. That same interface is used for indicating which fields are present in web services. When a field
is hidden from a page it is likewise hidden from web services. When a new field is added to a page it is added to web
services. Folks who develop new fields for custom modules and share those with others should ensure that their fields
implementations follow the design specifications. If followed correctly then all fields will behave in this way.

1.13 Bulk Loader

Note: Remember you must set the $DRUPAL_HOME environment variable if you want to cut-and-paste the commands
below. See DRUPAL_HOME Variable

The bulk loader is a tool that Tripal provides for loading of data contained in tab delimited files. Tripal supports
loading of files in standard formats (e.g. FASTA, GFF, OBO), but Chado can support a variety of different biological
data types and there are often no community standard file formats for loading these data. For example, there is no file
format for importing genotype and phenotype data. Those data can be stored in the feature, stock and natural diversity
tables of Chado. The Bulk Loader was introduced in Tripal v1.1 and provides a web interface for building custom data
loader. In short, the site developer creates the bulk loader “template”. This template can then be used and re-used for
any tab delimited file that follows the format described by the template. Additionally, bulk loading templates can be
exported allowing Tripal sites to share loaders with one another.

The following commands can be executed to install the Tripal Bulk Loader using Drush:

cd /var/www/
drush pm-enable tripal_bulk_loader

1.13.1 Plan How to Store Data

To demonstrate use of the Bulk Loader, a brief example that imports a list of organisms and associates them with their
NCBI taxonomy IDs will be performed. The input tab-delimited file will contains the list of all Fragaria (strawberry)
species in NCBI at the time of the writing of this document. Click the file link below and download it to /var/www/
html/sites/default/files.

• Fragaria.txt

cd $DRUPAL_HOME/sites/default/files
wget http://tripal.info/sites/default/files/book_pages/Fragaria_0.txt

This file has three columns: NCBI taxonomy ID, genus and species:

Table 1: Fragaria sample file
3747 “Fragaria” “x ananassa”
57918 “Fragaria” “vesca”
60188 “Fragaria” “nubicola”
64939 “Fragaria” “iinumae”
64940 “Fragaria” “moschata”
64941 “Fragaria” “nilgerrensis”
64942 “Fragaria” “viridis”

172 Chapter 1. Tripal v3 User’s Guide

http://tripal.info/sites/default/files/book_pages/Fragaria_0.txt

Tripal Documentation, Release 7.x-3.x

To use the bulk loader you must be familiar with the Chado database schema and have an idea for where data should
be stored. It is best practice to consult the GMOD website or consult the Chado community (via the gmod-schema
mailing list) when deciding how to store data. For this example, we want to add the species to Chado, and we want
to associate the NCBI taxonomy ID with these organisms. The first step, therefore, is to decide where in Chado these
data should go. In Chado, organisms are stored in the organism table. This table has the following fields:

chado.organism Table Schema

NameType Description
or-
gan-
ism_id

se-
rial

PRIMARY KEY

ab-
bre-
vi-
a-
tion

char-
acter
vary-
ing(255)

genus char-
acter
vary-
ing(255)

UNIQUE#1 NOT NULL

specieschar-
acter
vary-
ing(255)

UNIQUE#1 NOT NULL A type of organism is always uniquely identified by genus and species.
When mapping from the NCBI taxonomy names.dmp file, this column must be used where it is
present, as the common_name column is not always unique (e.g. environmental samples). If a
particular strain or subspecies is to be represented, this is appended onto the species name. Follows
standard NCBI taxonomy pattern.

com-
mon_name

char-
acter
vary-
ing(255)

com-
ment

text

We can therefore store the second and third columns of the tab-delimited input file in the genus and species columns
of the organism table.

In order to store a database external reference (such as for the NCBI Taxonomy ID) we need to use the following
tables: db, dbxref, and organism_dbxref. The db table will house the entry for the NCBI Taxonomy; the dbxref
table will house the entry for the taxonomy ID; and the organism_dbxref table will link the taxonomy ID stored in the
dbxref table with the organism housed in the organism table. For reference, the fields of these tables are as follows:

chado.db Table Schema

Name Type Description
db_id serial PRIMARY KEY
name character varying(255) UNIQUE NOT NULL
description character varying(255)
urlprefix character varying(255)
url character varying(255)

chado.dbxref Table Schema

1.13. Bulk Loader 173

https://lists.sourceforge.net/lists/listinfo/gmod-schema
https://lists.sourceforge.net/lists/listinfo/gmod-schema

Tripal Documentation, Release 7.x-3.x

Name Type Description
dbxref_id serial PRIMARY KEY
db_id integer Foreign Key db. UNIQUE#1 NOT NULL
acces-
sion

character vary-
ing(255)

UNIQUE#1 NOT NULL. The local part of the identifier. Guaranteed by the db
authority to be unique for that db.

version character vary-
ing(255)

UNIQUE#1 NOT NULL DEFAULT ‘’

descrip-
tion

text

chado.organism_dbxref Table Schema

Name Type Description
organism_dbxref_id serial PRIMARY KEY
organism_id integer Foreign key organism. UNIQUE#1 NOT NULL
dbxref_id integer Foreign key dbxref. UNIQUE#1 NOT NULL

For our bulk loader template, we will therefore need to insert values into the organism, db, dbxref and organ-
ism_dbxref tables. In our input file we have the genus and species and taxonomy ID so we can import these with a
bulk loader template. However, we do not have information that will go into the db table (e.g. “NCBI Taxonomy”).
This is not a problem as the bulk loader can use existing data to help with import. We simply need to use the “NCBI
Taxonomy” database that is currently in the Chado instance of Tripal v3.

1.13.2 Creating a New Bulk Loader Template

Now that we know where all of the data in the input file will go and we have the necessary dependencies in the
database (i.e. the NCBI Taxonomy database), we can create a new bulk loader template. Navigate to Tripal →
Data Loaders → Chado Bulk Loader, click the Templates tab in the top right corner, and finally click the
link Add Template. The following page appears:

174 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

We need to first provide a name for our template. Try to name templates in a way that are meaningful for others.
Currently only site administrators can load files using the bulk loader. But, future versions of Tripal will provide
functionality to allow other privileged users the ability to use the bulk loader templates. Thus, it is important to name
the templates so that others can easily identify the purpose of the template. For this example, enter the name NCBI
Taxonomy Importer (taxid, genus, species). The following page appears:

1.13. Bulk Loader 175

Tripal Documentation, Release 7.x-3.x

Notice that the page is divided into two sections: Current Records and Current Fields. Before we continue with
the template we need a bit of explanation as to the terminology used by the bulk loader. A record refers to a Chado
table and an action on that table. For example, to insert the data from the input file we will need to select the NCBI
Taxonomy database from the db table and insert entries into the dbxref, organism and dbxref_organism tables.
Therefore, we will have four records:

• An insert into the organism table

• A select from the db table (to get the database id (db_id) of the “NCBI Taxonomy” database needed for the
insert into the dbxref table)

• An insert into the dbxref table

• An insert into the organism_dbxref table.

Each record contains a set of fields on which the action is performed. Thus, when we insert an entry into the organism
table we will insert into two fields: genus and species.

To create the first record for inserting an organism, click the button New Record/Field. The following page appears:

176 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

By default, when adding a new record, the bulk loader also provides the form elements for adding the first field of the
record as well. We are adding a new record, so we can leave the Record drop-down as New Record. Next, give this
record a unique record name. Because we are inserting into the organism table, enter the name Organism into the
Unique Record Name box.

We also have the opportunity with this form to add our first field to the record. Because we are adding the organism
record we will first add the field for the genus. In the Field section we specify the source of the field. Because the
genus value comes from the input file, select the first radio button titled Data. Next we need a human-readable name
for the field. This field is the genus field so we will enter Genus into the Human-readable Title for Field box. Next,
we need to specify the Chado table for this record. In the Chado table drop down box, choose the organism table,
and in the Chado Field/Column drop down box select genus.

In the next section, titled Data File Column, we need to indicate the column in the tab-delimited file where the genus
is found. For the example file this is column 2 (columns are ordered beginning with number 1). Therefore, enter the
number 2 in the Column box. There are additional options to expose the field to the user, but for now we can ignore
those options. Click the Save Changes button at the bottom. We now see that the organism record and the first field
have been added to our bulk loader template.

1.13. Bulk Loader 177

Tripal Documentation, Release 7.x-3.x

We also see that the Mode (or action) for this record has been set to insert by default. Before continuing we should
edit the settings for the record so that it is more fault tolerant. Click the Edit link to the left of the new organism
record. On the resulting page we see the record details we already provided, but now there is a section titled Action
to take when Loading Record. By default, the INSERT option is selected. This is correct. We want to perform an
insert. However, notice in the Additional Insert Options section, the SELECT if duplicate (no insert). Check this
box. This is a good option to add because it prevents the bulk loader from failing if the record already exists in the
table.

Click the Save Record button to save these settings. Now, you will see that the Mode is now set to insert or select if
duplicate. Previously the Mode was just insert.

Next, we need to add the species field to the record. Click the Add Field link to the left of the organism record name.
Here we are presented with the same form we used when first adding the organism record. However, this time, the
Record section is collapsed. If we open that section the drop down already has the Organism record as we are not
creating a new record. To add the Species field, provide the following values and click the Save Changes button:

• Type of field: Data

178 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

• Human-readable Title for Field: Species

• Chado table: organism (should already be set)

• Chado Field/Column: species

• Column: 3

We now have two fields for our organism record:

At this point our organism record is complete, however there are still a few fields in the organism table of Chado that
are not present in our record. These include the organism_id, abbreviation, common_name and comment fields.
We do not have values in our input file for any of these fields. Fortunately, the organism_id field is a primary key field
and is auto generated when a record is submitted. We do not need to provide a value for that field. The other fields are
not part of the unique constraint of the table. Therefore, those fields are optional and we do not need to specify them.
Ideally, if we did have values for those non-required fields we would add them as well.

To this point, we have built the loader such that it can load two of the three columns in our input file. We have one
remaining column: the NCBI taxonomy ID. In order to associate an organism with the taxonomy ID we must first

1.13. Bulk Loader 179

Tripal Documentation, Release 7.x-3.x

insert the taxonomy ID into the dbxref table. Examining the dbxref table, we see that a db_id field is a required value
in a foreign key relationship. We must first retrieve the db_id from the db table of Chado before we can add the entry
to the dbxref table. Therefore, we will create a second record that will do just that. On the Edit Template page click
the button New Record/Field. Here we see the same form we used for adding the first organism record. Provide the
following values:

• For the record:

– Record: New Record

– Unique Record Name: NCBI Taxonomy DB

– Record Type/Action: SELECT ONCE: Select the record only once for each constant set.

• For the field:

– Type of field: Constant

– Human-readable Title for Field: DB name

– Chado table: db

– Chado field/column: name

• Within the Constant section:

– Constant Value: NCBITaxon

– Check “Ensure the value is in the table”

Here we use a field type of Constant rather than Data. This is because we are providing the value to be used in the
record rather than using a value from the input file. The value we are providing is “NCBI Taxonomy” which is the
name of the database we added previously. The goal is to match the name “NCBI Taxonomy” with an entry in the db
table. Click the Save Changes button.

We now see a second record on the Edit Template page. However, the mode for this record is insert. We do not want
to insert this value into the table, we want to select it because we need the corresponding db_id for the dbxref record.
To change this, click the Edit link to the left of the NCBI Taxonomy DB record. Here we want to select only the
option SELECT ONCE. We choose this option because the database entry that will be returned by the record will
apply for the entire input file. Therefore, we only need to select it one time. Otherwise, the select statement would
execute for each row in the input file causing excess queries. Finally, click Save Record. The NCBI Taxonomy DB
record now has a mode of select once. When we created the record, we selected the option to ‘SELECT ONCE’. This
means that the bulk loader will perform the action one time for that record for the entire import process. Because the
field is a constant the bulk loader need not execute that record for every row it imports from our input file. We simply
need to select the record once and the record then becomes available for use through the entire import process.

Now that we have a record that selects the db_id we can now create the dbxref record. For the dbxref record there
is a unique constraint that requires the accession, db_id and version. The version record has a default value so we
only need to create two fields for this new record: the db_id and the accession. We will use the db_id from the NCBI
Taxonomy DB record and the accession is the first column of the input file. First, we will add the db_id record. Click
the New Record/Field button and set the following:

• For the record:

– Record: New Record

– Unique Record Name: Taxonomy ID

– Record Type/Action: INSERT: insert the record

• For the field:

– Type of field: Record referral

– Human-readable Title for Field: NCBI Taxonomy DB ID

180 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

– Chado table: dbxref

– Chado Field/Column: db_id

• In the Record Referral Section:

– Record to refer to: NCBI Taxonomy DB

– Field to refer to: db_id

Click the Save Changes button. The Edit Template page appears.

Again, we need to edit the record to make the loader more fault tolerant. Click the Edit link to the left of the Taxonomy
ID record. Select the following:

• Insert

• Select if duplicate

To complete this record, we need to add the accession field. Click the Add field link to the left of the Taxonomy ID

1.13. Bulk Loader 181

Tripal Documentation, Release 7.x-3.x

record name. Provide the following values:

• For the field:

– Type of Field: Data

– Human-readable Title for Field: Accession

– Chado table: dbxref

– Chado field/column: accession

• In the Data File Column section:

– Column: 1

At this state, we should have three records: Organism, NCBI Taxonomy DB, and Taxonomy ID. We can now add the
final record that will insert a record into the organism_dbxref table. Create this new record with the following details:

• For the record:

– Record: New Record

– Unique Record Name: Taxonomy/Organism Linker

– Check: Insert: insert the record

• For the field:

– Type of Field: Record Referral

– Human-readable Title for Field: Accession Ref

– Chado table: organism_dbxref

– Chado field/column: dbxref_id

• In the Record Referral section:

– Record to refer to: Taxonomy ID

– Field to refer to: dbxref_id

Create the second field:

• For the field:

– Type of Field: Record Referral

– Human-readable Title for Field: Organism ID

– Chado table: organism_dbxref

– Chado field/column: organism_id

• In the Record Referral section:

– Record to refer to: Organism

– Field to refer to: organism_id

After saving the field. Edit the record and set the following:

• Change the record mode to: insert or select if duplicate

We are now done! We have created a bulk loader template that reads in a file with three columns containing an NCBI
taxonomy ID, a genus and species. The loader places the genus and species in the organism table, adds the NCBI
Taxonomy ID to the dbxref table, links it to the NCBI Taxonomy entry in the db table, and then adds an entry to the
organism_dbxref table that links the organism to the NCBI taxonomy Id. The following screen shots show how the
template should appear:

182 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

To save the template, click the Save Template link at the bottom of the page.

1.13.3 Creating a Bulk Loader Job (importing a file)

Now that we have created a bulk loader template we can use it to import a file. We will import the Fragaria.txt file
downloaded previously. To import a file using a bulk loader template, click the Add Content link in the administrative
menu and click the Bulk Loading Job. A bulk loading job is required each time we want to load a file. Below is a
screen shot of the page used for creating a bulk loading job.

1.13. Bulk Loader 183

Tripal Documentation, Release 7.x-3.x

Provide the following values:

• Job Name: Import of Fragaria species

• Template: NCBI Taxonomy Importer (taxid, genus species).

• Data File: [DRUPAL_HOME]/sites/default/files/Fragaria_0.txt

• Keep track of inserted IDs: No

• File has a header: No

Note: Be sure to change the [DRUPAL_HOME] token to where Drupal is installed.

Click Save. The page then appears as follows:

184 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

You can see details about constants that are used by the template and the where the fields from the input file will be
stored by clicking the Data Fields tab in the table of contents on the left sidebar.

1.13. Bulk Loader 185

Tripal Documentation, Release 7.x-3.x

Now that we have created a job, we can submit it for execution by clicking the Submit Job button. This adds a job to
the Tripal Jobs systems and we can launc the job as we have previously in this tutorial:

cd /var/www
drush trp-run-jobs --username=admin --root=$DRUPAL_HOME

After execution of the job you should see similar output to the terminal window:

Tripal Job Launcher
Running as user 'admin'

There are 1 jobs queued.
Calling: tripal_bulk_loader_load_data(2, 7)
Template: NCBI Taxonomy Importer (taxid, genus, species) (1)
File: /var/www/html/sites/default/files/Fragaria_0.txt (46 lines)

Preparing to load...
(continues on next page)

186 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

Loading...
Preparing to load the current constant set...

Open File...
Start Transaction...
Defer Constraints...
Acquiring Table Locks...

ROW EXCLUSIVE for organism
ROW EXCLUSIVE for dbxref
ROW EXCLUSIVE for organism_dbxref

Loading the current constant set...
Progress:
[|||] 100.00%. (46 of 46) Memory:
→˓33962080

Our Fragaira species should now be loaded, and we return to the Tripal site to see them. Click on the Organisms link
in the Search Data menu. In the search form that appears, type “Fragaria” in the Genus text box and click the Filter
button. We should see the list of newly added Fragaria species.

1.13. Bulk Loader 187

Tripal Documentation, Release 7.x-3.x

Before the organisms will have Tripal pages, the Chado records need to be Published. You can publish them by
navigating to Tripal Content -> Publish Tripal Content. Select the organism table from the dropdown and run the
job.

Note: In Tripal 2, records were synced by naviating to Tripal → Chado Modules → Organisms.

Once complete, return to the search form, find a Fragaria species that has been published and view its page. You
should see a Cross References link in the left table of contents. If you click that link you should see the NCBI
Taxonomy ID with a link to the page:

188 Chapter 1. Tripal v3 User’s Guide

Tripal Documentation, Release 7.x-3.x

1.13.4 Sharing Your Templates with Others

Now that our template for loading organisms with NCBI Taxonomy IDs is completed we can share our template loader
with anyone else that has a Tripal-based site. To do this we simply export the template in text format, place it in a text
file or directly in an email and send to a collaborator for import into their site. To do this, navigate to Tripal → Chado
Data Loaders → Buik Loader and click the Tempalate tab at the top. Here we find a table of all the templates we
have created. We should see our template named NCBI Taxonomy Importer (taxid, genus, species). In the far right
colum is a link to export that template. Licking that link will redirect you to a page where the template is provided in
a serialized PHP array.

1.13. Bulk Loader 189

Tripal Documentation, Release 7.x-3.x

Cut-and-paste all of the text in the Export field and send it to a collaborator.

To import a template that may have been created by someone else, navigate to Tripal → Chado Data Loaders →
Buik Loader and click the Tempalate tab. A link titled Import Template appears above the table of existing importers.
The page that appears when that link is clicked will allow you to import any template shared with you.

1.14 Customizing Your Site

Through the combination of Drupal, Chado and the Tripal API, it is possible to fully customize your site and to add
new functionality. Tripal does not store or display all data out-of-the box, and every site has its own different look-
and-feel. If you want greater functionality beyond what comes with Tripal please see the Developer’s Handbook for
instructions to use the Drupal and Tripal APIs to develop your own extensions to Tripal.

190 Chapter 1. Tripal v3 User’s Guide

CHAPTER 2

Developer’s Guide

2.1 Introduction to the Tripal API

Tripal provides an Application Programming Interfaces (API) that allows developers to interact with and customize
Tripal. Using the API, developers can customize the way data is presented or create custom modules that provide new
or different functionality. These custom modules can in turn be shared with the Tripal community. The Tripal API
is documented online at http://api.tripal.info/api/tripal/3.x (COMING SOON). This document provides examples and
best practices for using the Tripal API.

2.1.1 Requirements

In order to use the Tripal API the developer should have the following skills:

Common skills:

• Knowledge of PHP.

• Knowledge of relational databases and SQL.

To create custom modules:

• Familiarity with Drupal API

• Familiarity with Drupal module development

To use Chado for data storage:

• Knowledge of Chado and relationships between tables (at least tables where data of interest is stored).

• An idea how data is stored in Chado (or a willingness to ask questions)

Things that will make your Tripal development experience positive, fun and rewarding:

• A desire to write code that can be re-used and shared by other groups

• A desire to share your work with others to support other the Tripal community members.

• A willingness to ask for help on the Tripal Github issue queue if you get stuck, find bugs or desire new features.

191

http://api.tripal.info/api/tripal/3.x

Tripal Documentation, Release 7.x-3.x

2.2 Tripal Data Structures

This page explains the relationships between Entity types, Bundles (content type), Entities and Fields. These are data
structures provided by Drupal that Tripal v3 uses to expose biological content through your Drupal site, and to provide
flexibility in site customization. It is important to understand these terms and their relationships before developing
new modules or custom functionality. A quick summary of these Drupal data structures are as follows:

• Entity: a discrete data record. Entities are most commonly are seen as “pages” on a Drupal web site.

• Field: an “atomic” piece of ancillary data that describes, defines or expands the entity. Common fields include
the name of an entity, a “body” of descriptive text, etc.

• Bundle: a content type. An entity must always have a content type. Drupal provides several content types by
default: Basic Page and Article. Tripal provides biological bundles (e.g. genes, organisms, etc).

• Entity Type: despite the confusing name, an entity type is simply a group of bundles that are somehow related.
Drupal provides a “Node” Entity type that includes the Page and Article bundles. All of the Tripal bundles
(content types) belong to the TripalEntity Entity type.

The following figure describes the hierarchical relationship between Drupal Entity types (e.g. Node) in comparison
with TripalEntity entity types (e.g. Chromosome, Germplasm, etc.).

Furthermore, fields are “attached” to a Bundle and hold unique values for each Entity. The following figure describes
this relationship for a Gene Bundle that has several fields attached: name, description and organism. Note that in this
figure the Entity and each of the Fields are defined using a controlled vocabulary term. As a result, bundles and fields
can be described using the Semantic Web concepts of a “subject”, “predicate” and “object”. We will discuss more on
controlled vocabularies a bit later in the Handbook.

192 Chapter 2. Developer’s Guide

https://en.wikipedia.org/wiki/Semantic_Web

Tripal Documentation, Release 7.x-3.x

2.2.1 Bundles (Content Types)

Bundles are types of content in a Drupal site. By default, Drupal provides the Basic Page and Article content types,
and Drupal allows a site developer to create new content types on-the-fly using the administrative interface–no pro-
gramming required. Tripal also provides several Content Type by default. During installation of Tripal the Organism,
Gene, Project, Analysis and other content types are created automatically. The site developer can then create new
content types for different biological data–again, without any programming required.

In order to to assist with data exchange and use of common data formats, Tripal Bundles are defined using a controlled
vocabulary term (cvterm). For example, a “Gene” Bundle is defined using the Sequence Ontology term for gene
whose term accession is: SO:0000704. This mapping allows Tripal to compare content across Tripal sites, and expose
data to computational tools that understand these vocabularies. You can create as many Tripal Content Types as you
would like through Administration > Structure > Tripal Content Types provided you can define it using a controlled
vocabulary term.

By default, Tripal uses Chado as its primary data storage back-end. When a bundle is created, the Tripal Chado module
allows you to map a Bundle to a table in Chado. Thus, any content type desired can be define as well as how it is
stored in Chado–all using the administrative interface.

2.2.2 Entity

An entity is a discrete data record. Entities are most commonly seen as “pages” on a Drupal web site and are instances
of a Bundle (i.e content type). When data is published on a Tripal site such as organisms, genes, germplasm, maps,
etc., each record is represented by a single entity with an entity ID as its only attribute. All other information that the
entity provides is made available via Fields.

2.2. Tripal Data Structures 193

Tripal Documentation, Release 7.x-3.x

2.2.3 Fields

A field is a reusable “data container” that is attached to a Bundle. Programmatically, each field provides one or more
primitive data types, with validators and widgets for editing and formatters for display. Each field independently
manages the data to which it assigned. Just like with Bundles, Fields are also described using controlled vocabulary
terms. For example, a gene Bundle has a field attached that provides the name of the gene. This field only provides
the name and nothing more. Tripal uses the schema:name vocabulary term to describe the field.

2.2.4 Field Instances

Fields describe “atomic” units of data that are associated with an entity. For example, a “name” is an atomic unit of
data about a Gene or Organism entity. Fields can be reused for multiple Bundles. For example, gene, mRNA, genetic
markers and variants all have name data. Despite that all of these Bundles provides a “name”, we only need one field to
describe that this data is a “name”. However, we may want to customize a field specific to each bundle. Therefore, an
Instance of a field is attached to a bundle, and field instances can then be customized differently. The most important
customization is the one that defines the Chado table from which the data for a field is retrieved. Despite that field
instances are attached to bundles, they become visible with Entities. When an entity is loaded for display, Drupal
examines all of the fields that are attached to the entity’s bundle, and then populates the fields instances with data
specific to the entity being loaded.

2.2.5 Entity Types

An entity type is simply a group of Bundles that have some similarity. For examples Drupal provides a Node entity
type. The Node entity type contains the Basic Page and Article Bundles. Tripal v2 expanded the Node entity type when
creating new content. Tripal v3, however, uses an a new entity type named TripalEntity that provides the Organism,
Gene, Analysis, etc. content types. Using these new entity types provides a a more responsive solution then the Node
entity type, is more flexible, and supports the new ontology-driven approach of Tripal v3.

2.3 Module Development Best Practice

If you create custom Tripal Modules, here are some best practices and suggestions.

2.3.1 The Drupal Devel Module

Before staring your development work, it is suggested that you download and install the Drupal devel module. This
module helps greatly with debugging your custom theme or module. A very useful function of this module is the dpm
function. You can use the dpm function to print to the web page an interactive view of the contents of any variable.
This can be extremely helpful when accessing Chado data in objects and arrays returned by Tripal.

2.3.2 Add your module to Tripal.info

Add your modules to the Tripal ReadtheDocs Extension Modules list. The Tripal Module Rating System was designed
to give guidance on Tripal module development best practices.

194 Chapter 2. Developer’s Guide

http://schema.org/name
https://drupal.org/project/devel

Tripal Documentation, Release 7.x-3.x

2.3.3 Coding Best Practices

2.3.3.1 Host your code on GitHub

We recommend making your code open source and hosting it on GitHub. It’s free, it let’s people easily find, use, and
contribute to your source code.

2.3.3.2 Associate the GitHub repository with Tripal

Once your module is on GitHub, consider joining the Tripal organization. Your lab group can exist as a team and
maintain control over your code, but your projects will be listed in the main Tripal group.

If you’d rather not, you can still tag your project as Tripal by clicking on the Manage Topics Link at the top of your
repository.

2.3.3.3 DOIs

When your module is release ready, why not create a Digital Object Identifier (DOI) for it with Zenodo? It’s free!
Sync your github account and create a new release (Zenodo won’t find old releases). You can then display your DOI
badge on your module’s page.

Additionally, there is a Tripal Community group on Zenodo. You can edit your record to associate your DOI with the
Tripal community.

2.3.3.4 Testing and Continuous Integration

Tripal Test Suite is a full-featured testing module that makes writing tests much easier. which will automatically set
up a PHPUnit and Travis testing environment for you.

• Test with PHPUnit

• Run tests as you push code with Travis CI

2.3.3.5 Documentation

Every repository can include a README file that will be displayed on the repository page. A README file should
at a minimum include:

• An overview of the module

• Instructions on how to install & use the module

Consider documenting your Code itself. Tripal documents in the Doxygen style which allows documentation web-
pages to be automatically generated. Even if you don’t build HTML documentation, the in-line code documentation
will be very helpful to contributors.

2.3.3.6 Coding Standards

Drupal has defined coding standards that Tripal modules should meet.

2.3. Module Development Best Practice 195

https://zenodo.org/
https://zenodo.org/communities/tripal/
https://github.com/statonlab/TripalTestSuite
http://www.stack.nl/~dimitri/doxygen/
https://www.drupal.org/docs/develop/standards/coding-standards

Tripal Documentation, Release 7.x-3.x

2.4 Accessing Chado

Primarily biological data made available to Tripal is stored in the GMOD Chado schema. As such, you will likely
need to interact with Chado at some point. Tripal has developed a number of API functions and classes to make this
interaction easier and more generic.

2.4.1 The Chado Query API

Provides an API for querying of chado including inserting, updating, deleting and selecting from specific chado tables.
There is also a generic function, chado_query(), to execute and SQL statement on chado. It is ideal to use these
functions to interact with chado in order to keep your module compatible with both local & external chado databases.
Furthermore, it ensures connection to the chado database is taken care of for you.

2.4.1.1 Generic Queries to a specific chado table

Selecting Records

chado_select_record([table name], [columns to select], [specify record to
select], [options*])

This function allows you to select various columns from the specified chado table. Although you can only select from
a single table, you can specify the record to select using values from related tables through use of a nested array. For
example, the following code shows you how to select the name and uniquename of a feature based on it’s type and
source organism.

$values = array(
'organism_id' => array(
'genus' => 'Citrus',
'species' => 'sinensis',

),
'type_id' => array (
'cv_id' => array (

'name' => 'sequence',
),
'name' => 'gene',
'is_obsolete' => 0

),
);

$result = chado_select_record(
'feature', // table to select from
array('name', 'uniquename'), // columns to select
$values // record to select (see variable defn. above)

);

Inserting Records

chado_insert_record([table name], [values to insert], [options*])

This function allows you to insert a single record into a specific table. The values to insert are specified using an
associative array where the keys are the column names to insert into and they point to the value to be inserted into
that column. If the column is a foreign key, the key will point to an array specifying the record in the foreign table
and then the primary key of that record will be inserted in the column. For example, the following code will insert a

196 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

feature and for the type_id, the cvterm.cvterm_id of the cvterm record will be inserted and for the organism_id, the
organism.organism_id of the organism_record will be inserted.

$values = array(
'organism_id' => array(

'genus' => 'Citrus',
'species' => 'sinensis',

),
'name' => 'orange1.1g000034m.g',
'uniquename' => 'orange1.1g000034m.g',
'type_id' => array (

'cv_id' => array (
'name' => 'sequence',

),
'name' => 'gene',
'is_obsolete' => 0

),
);
$result = chado_insert_record(

'feature', // table to insert into
$values // values to insert

);

Updating Records

chado_update_record([table name], [specify record to update], [values to
change], [options*])

This function allows you to update records in a specific chado table. The record(s) you wish to update are specified
the same as in the select function above and the values to be update are specified the same as the values to be inserted
were. For example, the following code species that a feature with a given uniquename, organism_id, and type_id (the
unique constraint for the feature table) will be updated with a new name, and the type changed from a gene to an
mRNA.

$umatch = array(
'organism_id' => array(
'genus' => 'Citrus',
'species' => 'sinensis',

),
'uniquename' => 'orange1.1g000034m.g7',
'type_id' => array (
'cv_id' => array (

'name' => 'sequence',
),
'name' => 'gene',
'is_obsolete' => 0

),
);
$uvalues = array(

'name' => 'orange1.1g000034m.g',
'type_id' => array (
'cv_id' => array (

'name' => 'sequence',
),
'name' => 'mRNA',
'is_obsolete' => 0

(continues on next page)

2.4. Accessing Chado 197

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

),
);
$result = chado_update_record('feature',$umatch,$uvalues);

Deleting Records

chado_delete_record([table name], [specify records to delete], [options*])

This function allows you to delete records from a specific chado table. The record(s) to delete are specified the same
as the record to select/update was above. For example, the following code will delete all genes from the organism
Citrus sinensis.

$values = array(
'organism_id' => array(

'genus' => 'Citrus',
'species' => 'sinensis',

),
'type_id' => array (

'cv_id' => array (
'name' => 'sequence',

),
'name' => 'gene',
'is_obsolete' => 0

),
);
$result = chado_select_record(

'feature', // table to select from
$values // records to delete (see variable defn. above)

);

2.4.1.2 Generic Queries for any SQL

Often it is necessary to select from more then one table in chado or to execute other complex queries that cannot
be handled efficiently by the above functions. It is for this reason that the chado_query([sql string],
[arguments to sub-in to the sql]) function was created. This function allows you to execute any
SQL directly on the chado database and should be used with care. If any user input will be used in the query make
sure to put a placeholder in your SQL string and then define the value in the arguments array. This will make sure that
the user input is sanitized and safe through type-checking and escaping. The following code shows an example of how
to use user input resulting from a form and would be called with the form submit function.

$sql = "SELECT F.name, CVT.name as type_name, ORG.common_name
FROM feature F
LEFT JOIN cvterm CVT ON F.type_id = CVT.cvterm_id
LEFT JOIN organism ORG ON F.organism_id = ORG.organism_id
WHERE
F.uniquename = :feature_uniquename";

$args = array(':feature_uniquename' => $form_state['values']['uniquename']);
$result = chado_query($sql, $args);
foreach ($result as $r) { [Do something with the records here] }

If you are going to need more then a couple fields, you might want to use the Chado Variables API (specifically
chado_generate_var()) to select all of the common fields needed including following foreign keys.

198 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

2.4.1.3 Loading of Variables from chado data

These functions, chado_generate_var() and chado_expand_var(), generate objects containing the full
details of a record(s) in chado. These should be used in all theme templates.

This differs from the objects returned by chado_select_record in so far as all foreign key relationships have
been followed meaning you have more complete details. Thus this function should be used whenever you need a full
variable and chado_select_record should be used if you only case about a few columns.

The initial variable is generated by the chado_generate_var([table], [filter criteria],
[optional options]) function. An example of how to use this function is:

$values = array(
'name' => 'Medtr4g030710'

);
$features = chado_generate_var('feature', $values);

This will return an object if there is only one feature with the name Medtr4g030710 or it will return an array of feature
objects if more than one feature has that name.

Some tables and fields are excluded by default. To have those tables & fields added to your variable you
can use the chado_expand_var([chado variable], [type], [what to expand], [optional
options]) function. An example of how to use this function is:

// Get a chado object to be expanded
$values = array(

'name' => 'Medtr4g030710'
);

$features = chado_generate_var('feature', $values);

// Expand the organism node
$feature = chado_expand_var($feature, 'node', 'organism');

// Expand the feature.residues field
$feature = chado_expand_var($feature, 'field', 'feature.residues');

// Expand the feature properties (featureprop table)
$feature = chado_expand_var($feature, 'table', 'featureprop');

2.4.2 The Chado Schema API

The Chado Schema API provides an application programming interface (API) for describing Chado tables, accessing
these descriptions and checking for compliancy of your current database to the chado schema. This API consists
of the ChadoSchema class which provides methods for interacting with the Chado Schema API and a collection of
supporting functions, one for each table in Chado, which describe each version of the Chado schema. Each function
simply returns a Drupal style array that defines the table.

2.4.2.1 Ensuring columns Tables & Columns exist

Generally you can assume the tables and columns in the Chado schema have been unaltered. That said, there are still
cases where you might want to check that specific tables and columns exist. For example, when using a custom table,
it is best practice to ensure it is there before querying as it can be removed through the administrative interface.

To check the existence of a specific table and column, you can use the following:

2.4. Accessing Chado 199

Tripal Documentation, Release 7.x-3.x

$chado_schema = new \ChadoSchema();

// Check that the organism_feature_count custom table exists.
$table_name = 'organism_feature_count';
$table_exists = $chado_schema->checkTableExists($table_name);

if ($table_exists) {

// Check that the organism_feature_count.feature_id column exists.
$column_name = 'feature_id';
$column_exists = $chado_schema->checkColumnExists($table_name, $column_name);

if ($column_exists) {

[do your query, etc. here]

} else { [warn the admin using tripal_report_error()] }
} else { [warn the admin using tripal_report_error()] }

2.4.2.2 Checking the Schema Version

If you are using chado tables specific to a given version of Chado, it is best practice to check the chado version of the
current site before querying those tables. You can use the following query to do this:

$chado_schema = new \ChadoSchema();
$version = $chado_schema-getVersion();
if ($version == '1.3') {

[do your chado v1.3 specific querying here]
} else { [warn the admin using tripal_report_error()] }

2.4.2.3 Retrieving a list of tables

To retrieve a list of Chado tables, you can use the following:

$chado_schema = new \ChadoSchema();

// All Chado Tables including custom tables
$all_tables = $chado_schema->getTableNames(TRUE);

// All Chado Tables without custom tables
$all_tables = $chado_schema->getTableNames();

// Chado tables designated as Base Tables by Tripal.
$base_tables = $chado_schema->getBaseTables();

2.4.2.4 Ensuring your Chado instance is compliant

Checking compliancy of your Chado instance with the released Chado Schema is a great way to confirm an upgrade
has gone flawlessly. Additionally, while it is not recommended, sometimes customizations to the Chado schema may
be necessary. In these cases, you should ensure backwards compatibility through compliance checking to confirm
Tripal will work as expected.

Chado compliancy testing is provided with Tripal’s automated PHPUnit testing. As such, to test compliancy of your
specific Chado instance, you first need to install Composer. Luckily this can be as easy as:

200 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

php -r "copy('https://getcomposer.org/installer', 'composer-setup.php');"
php -r "if (hash_file('SHA384', 'composer-setup.php') ===
→˓'544e09ee996cdf60ece3804abc52599c22b1f40f4323403c44d44fdfdd586475ca9813a858088ffbc1f233e9b180f061
→˓') { echo 'Installer verified'; } else { echo 'Installer corrupt'; unlink('composer-
→˓setup.php'); } echo PHP_EOL;"
php composer-setup.php
php -r "unlink('composer-setup.php');"

Once you have Composer, you need to install PHPUnit. This is installed locally within your Tripal repository. The
following bash snippet shows you how to both install composer locally and run compliance checking.

cd [DRUPAL_ROOT]/sites/all/modules/tripal
composer up

Now run compliance checking
./vendor/bin/phpunit --group chado-compliance

2.4.2.5 Schema Definition

To retrieve the schema definition for a specific table, you can execute the following:

$table_name = 'feature';
$chado_schema = new \ChadoSchema();
$table_schema = $chado_schema->getTableSchema($table_name);

The resulting $table_schema variable contains a Drupal-style array describing the schema definition of the table
specified by $table_name. This is a great tool when trying to develop generic queries, since you can extract
information about an unknown table and use it to build a query for that table. For more information on the format of
this array, see the Drupal Schema API documentation.

2.5 Creating Custom Modules

Note: This section is under construction

The Tripal API, in conjunction with the Drupal API allow developers to create their own modules that can “plug-in”
with Tripal. Developers may create their own modules if they desire new or different functionality. A custom module
can also be desired to house a sites “customizations.” The Tripal API provides an interface for module developers to
interact with the Chado database as well as the other Tripal core functions such as jobs management, materialized
views, in-house vocabularies, external database cross-references, properties, etc. An understanding of the Drupal API
and Drupal module development is required.

Basic instructions for creating custom Drupal module can be found here: https://www.drupal.org/docs/7/
creating-custom-modules. Before you can create custom modules that interact with Tripal, you should review those
instructions and have practiced creating at least a simple module. Tripal follows Drupal module development rules
and API.

2.6 Creating a Custom Field

The most common way that new content will be added to an existing site is by creating new fields, or field displays.
In Tripal v2 customizations were added by editing PHP templates files. These template files were relatively easy to

2.5. Creating Custom Modules 201

https://api.drupal.org/api/drupal/includes%21database%21schema.inc/group/schemaapi/7.x
https://www.drupal.org/docs/7/creating-custom-modules
https://www.drupal.org/docs/7/creating-custom-modules

Tripal Documentation, Release 7.x-3.x

create and customize, but they provided less flexibility and did not integrate well with other Drupal features such
as GUI-based page layout and Drupal Views. Tripal v3 fields now provide this flexibility. They also support data
exchange and data collections!

By default Tripal v3 provides many fields for display of Chado data. However, you may find that these fields do not
display data as you want, or you want to display data that the current fields do not already provide. This section of the
Handbook describes how to create new fields that are integrated into the display, search and exchange abilities of both
Drupal and Tripal.

If you are already familiar with Drupal fields you may be aware of the API functions and hooks that Drupal provides.
However, for the quantity of fields needed to support biological data, the Drupal API hooks quickly become over-
whelming. Additionally, documentation for fields in the Drupal API can sometimes be difficult to discover when first
working with fields. Therefore, Tripal provides several new PHP classes to simplify creation of fields and to consoli-
date all functionality into one easy to find set of files. To develop new fields you should be somewhat familiar working
with PHP’s Object-Oriented Classes. The new classes provided by Tripal are these:

Class
Name

Description

Tripal-
Field

The TripalField class provides the basic information about a new field. It provides loaders for extract-
ing data from the database and functions for querying data managed by the field.

Tripal-
FieldWid-
get

The TripalFieldWidget class provides the necessary form elements when editing an Entity to allow the
end-user to edit the value of the field (if desired). It provides the necessary validators and submitter
functions.

Tripal-
FieldFor-
matter

The TripalFieldFormatter class provides the visualization of the field when viewed on the page.

Chad-
oField

The ChadoField class extends the TripalField class and provides the necessary settings to allow the
field to map entities to data in Chado

Chad-
oField-
Widget

Extends the TripalFieldWidget class but currently provides no additional functionality. Use this class
when working with Chado data to ensure future backwards compatibility.

Chad-
oField-
Formatter

Extends the TriplFieldFormatter class but currently provides no additional functionality. Use this
class when working with Chado data to ensure future backwards compatibility.

The process for creating a custom field are as follows:

• Determine the controlled vocabulary term that best describes the data your field will create.

• Decide if you need the Chado field classes or the base Tripal field classes. If you intend to work with data
housed in Chado then you should use the Chado field classes.

• Decide if you want to build your class manually from the ground up or speed development by using the Staton
Lab Fields Generator tool.

• Create new implementations of classes that extend those listed in the table above. If you implement the functions
properly your field is plug-and-play! Tripal will find it and be able to use it.

The rest of this section will walk you through these steps.

2.6.1 Selecting Vocabulary Terms

2.6.1.1 Ontologies: what and why?

Tripal 3 requires all bundles and fields to be associated with a Controlled Vocabulary (CV). CVs are dictionaries of
defined terms (CV terms) that make data machine-accessible, ensuring uniform terms are used across experiments, or-

202 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

ganisms and websites. Without CVterms, our scientific knowledge might be split by “dialects”. Plant biologists might
study temperature stress, while animal biologists study heat shock. Each group might benefit from the knowledge of
the other, but they use a different vocabulary to describe the same thing, creating challenges for data discovery and
exchange. CV terms make this easier not just for people, but especially for machines. Ontologies take this a step
further. Where CVs are controlled lists of CVterms, ontologies are a controlled language, that include hierarchical
relationships of terms.

Tripal leverages vocabularies to make use of the Semantic Web. Every bundle and field defined in Tripal will be
associated with a CVterm. Therefore, it is important to find community developed terms. The EMBL EBI Ontology
Lookup Service provides an easy location to search for and identify terms. When choosing terms for new Bundles and
Fields, think carefully about the terms you will use to describe your objects. Selecting the proper CV term that best
describes the data may be the most challenging part of creating custom Bundles and Fields!

Before you can create a new Bundle or Field the vocabulary term must be present in your local Tripal site. You
can check if a term exists by using the Tripal lookup service on your local site using the URL path cv/lookup (e.g.
http://your-site/cv/lookup). If the term is not present then you’ll need to add it. You can do so manually by using
Tripal’s controlled vocabulary admin pages. For creating new bundles this is all you need to do. However, when
creating Fields you will want to programmatically add the term. This is important because Fields are meant to be
shared. If you create an awesome field that you want to share with others then you need to make sure the terms get
added programmatically. The following sections describe how terms are stored in Chado and how you can add them
using Tripal API calls.

2.6.1.2 Storage of Terms in Chado

In Chado, CVs are stored by two tables: the db and cv tables. Chado was designed to store a record for the online
database that a vocabulary lives at in the db table, and the namespace of a vocabulary in the cv table. For example,
the sequence ontology uses the namespace, sequence, which is stored in the cv table but uses the short name of SO
which is stored in the db table. As we’ll see later, sometimes the distinction between what gets stored in the cv vs
the db tables can get a bit fuzzy with some vocabularies. The terms themselves are stored in the cvterm table. The
cvterm table has a foreign key to the cv table via the cv_id field. Every controlled vocabulary term has an accession.
For example the term gene in the Sequence Ontology has an accession number of SO:0000704. Accession numbers
consist of two parts: a vocabulary “short name”, followed by a unique identifier separated by a colon. Within Chado,
the accession for any term is stored in the dbxref table. This table has a foreign key to the db table via the db_id as
well as a foreign key to the cvterm table via the dbxref_id field.

2.6.1.3 Vocabulary Short Names and Namespaces

How can you tell what the short name and namespace values will be for a vocabulary term that you want to insert
into Chado for your custom Bundle or Field? Hint: use the information is in the EMBL-EBI Ontology Lookup Service
(OLS). The following sections provide three examples for different cases.

Case 1: Ontologies without a defined namespace

Consider the term for organism.

Notice how the teal box (the short name) is OBI, and the orange box contains the full accession, OBI:0100026 which
includes but the short name and the unique term accession value. Unfortunately, the OLS does not indicate the
namespace terms. So, as a rule we will use the short name converted to lower case. Before using this term in a Tripal
Bundle or Field you may need to insert this term into Chado. You can do so in your custom module code using the
tripal_insert_cvterm function. The following provides a demonstration:

2.6. Creating a Custom Field 203

https://en.wikipedia.org/wiki/Semantic_Web
http://www.ebi.ac.uk/ols/index
http://www.ebi.ac.uk/ols/index
http://your-site/cv/lookup
http://www.ebi.ac.uk/ols/index
http://www.ebi.ac.uk/ols/ontologies/obi/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FOBI_0100026

Tripal Documentation, Release 7.x-3.x

204 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

$term= tripal_insert_cvterm([
'id' => 'OBI:0100026',
'name' => 'organism',
'cv_name' => 'OBI',
'definition' => 'A material entity that is an individual living system, such

→˓as animal,
plant, bacteria or virus, that is capable of replicating or reproducing,

→˓growth and maintenance
in the right environment. An organism may be unicellular or made up,

→˓like humans, of many
billions of cells divided into specialized tissues and organs.',

]);

Note that in the code above the namespace is provided as the cv_name element and the full accessions (including the
short name) is provided as the id element. In this case the OBI CV already exists by default in the Tripal database, so
we did not need to add the vocabulary record. If the OBI did not exist we could have added it using the following API
calls. First we insert the “database” record for the ontology.

tripal_insert_db(array(
'name' => 'obi',
'description' => 'The Ontology for Biomedical Investigation.',
'url' => 'http://obi-ontology.org/page/Main_Page',
'urlprefix' => 'http://purl.obolibrary.org/obo/{db}_{accession}',

));

Notice here that the name element is the namespace (short name converted to lower case) for the vocabulary. The url
is the web address for the ontology online. The urlprefix is a URL that can be used to construct a link that when clicked
will take the user to any term in the vocabulary. Almost all vocabularies will have a common URL for all terms. Tripal
will automatically substitute the short name into the {db} token and the term accession in to the {accession} token to
generate the URL.

Second, we insert the record for the controlled vocabulary.

tripal_insert_cv(
'OBI',
'Ontology for Biomedical Investigation. The Ontology for Biomedical

→˓Investigations (OBI) is build in a collaborative, international effort and will
→˓serve as a resource for annotating biomedical investigations, including the study
→˓design, protocols and instrumentation used, the data generated and the types of
→˓analysis performed on the data. This ontology arose from the Functional Genomics
→˓Investigation Ontology (FuGO) and will contain both terms that are common to all
→˓biomedical investigations, including functional genomics investigations and those
→˓that are more domain specific.'
);

Case 2: Ontologies with a defined namespace

Consider the entry for CDS.

Notice that in the Term Info box on the right there is the term has_obo_namespace which is defined as the word:
sequence. This is much better than the organism example from the OBI. We now know the correct namespace for the
term! By default, Tripal loads the Sequence Ontology during install. However, suppose we did not have this term
loaded we could do so with the following:

2.6. Creating a Custom Field 205

https://www.ebi.ac.uk/ols/ontologies/so/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FSO_0000316

Tripal Documentation, Release 7.x-3.x

206 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

$term= tripal_insert_cvterm([
'id' => 'SO:0000316',
'name' => 'CDS',
'cv_name' => 'sequence',
'definition' => 'A contiguous sequence which begins with, and includes, a

→˓start codon and ends with, and includes, a stop codon. [http://www.
→˓sequenceontology.org/browser/current_svn/term/SO:ma].',

]);

Notice in the code above we can properly set the cv_name to sequence.

Case 3: Ontologies with multiple namespaces

Some ontologies are b into sub-ontologies. This includes the Gene Ontology (GO). Let’s consider the example
GO term cell aggregation. Looking at the EBI entry, the teal box is GO, the orange box is GO:0098743, and the
has_obo_namespace is biological_process. However, the GO provides two other namespaces: cellular_component
and molecular_function. Be sure to pay attention to these different namespaces if you ever need to manually insert a
term.

Case 4: Ontologies with multiple short names

The EDAM ontology builds its term accessions using different short names instead of the ontology. Consider the
EDAM term for Sequence. The teal box is EDAM, the orange box is data:2044, and there is no namespace.

For this case, the namespace is EDAM, the short name is data, and the accession is 2044. Unfortunately, this breaks
the paradigm that Chado expects. Typically the short name is the teal box (EDAM). In order to force Chado to

2.6. Creating a Custom Field 207

http://www.ebi.ac.uk/ols/ontologies/go/terms?iri=http%3A%2F%2Fpurl.obolibrary.org%2Fobo%2FGO_0098743
GO:0098743
http://www.ebi.ac.uk/ols/ontologies/edam/terms?iri=http%3A%2F%2Fedamontology.org%2Fdata_2044
data:2044

Tripal Documentation, Release 7.x-3.x

properly handle ontologies like this we are forced to reverse the short name and namespace values when creating our
record:

$term= tripal_insert_cvterm([
'id' => 'data:2044',
'name' => 'sequence',
'cv_name' => 'EDAM',
'definition' => 'One or more molecular sequences, possibly with associated

→˓annotation.',
]);

tripal_insert_db(array(
'name' => 'data',
'description' => 'Bioinformatics operations, data types, formats, identifiers and

→˓topics.',
'url' => 'http://edamontology.org/page',
'urlprefix' => 'http://edamontology.org/{db}_{accession}',

));

tripal_insert_cv(
'EDAM',
'EDAM is an ontology of well established, familiar concepts that are prevalent

→˓within bioinformatics, including types of data and data identifiers, data formats,
→˓operations and topics. EDAM is a simple ontology - essentially a set of terms with
→˓synonyms and definitions - organised into an intuitive hierarchy for convenient use
→˓by curators, software developers and end-users. EDAM is suitable for large-scale
→˓semantic annotations and categorization of diverse bioinformatics resources. EDAM
→˓is also suitable for diverse application including for example within workbenches
→˓and workflow-management systems, software distributions, and resource registries.'
);

208 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

Case 5: You really cant find a term!

Sometimes a good CVterm just doesn’t exist for what you want to describe. If you can’t find a CV term, you can
insert a term into the “local” CV. This is meant to be used as a last resort. In these cases, before you use a local term,
consider contributing the term to an existing CV or ontology. Any terms that are invented for a local site may mean
that the data exposed by your site cannot be discovered by other sites or tools. In this case, the accession will not be
numeric, but is the same as the term name.

$term= tripal_insert_cvterm([
'id' => 'local:shame_on_you',
'name' => 'shame_on_you',
'cv_name' => 'local',
'definition' => 'You should really find a good CVterm.',

]);

Notice in the above code the short name and namespace are both “local” as this is a local term on the site.

2.6.2 Manual Field Creation

To show how a TripalField works we will break down a class implementation section by section. Here we will use the
obi__organism field that comes with Tripal and which extends the ChadoField class. The ChadoField class is almost
identical to the TripalField class except that it provides a few extra settings for working with Chado tables. To create
your own class you need to create a new class that implements the necessary functions.

Note: Creation of your first field may not seem easy! The following document is a lot to think about and consider.
Therefore, when you write your first field, don’t try to do everything at once. Take it one piece at a time. The variables
and functions described here are in order with the most critical components described first. Take it at an even pace.

2.6.2.1 Directory Structure for Fields

Before we create our class we must first create a proper directory structure. Tripal expects that all new Tripal field
classes are located inside of a custom module in the following directory structure:

/sites/all/modules/[your_module]/includes/TripalFields/[field_name]/[field_name].inc
/sites/all/modules/[your_module]/includes/TripalFields/[field_name]/[field_name]_
→˓widget.inc
/sites/all/modules/[your_module]/includes/TripalFields/[field_name]/[field_name]_
→˓formatter.inc

In the directories above the token [your_module] can be substituted with the name of your module and [field_name]
is the name of your field. You can name your field whatever you like, but you must use this name consistently
in other locations throughout the modules. Because all fields are defined by vocabulary terms, it is custom to
name your fields with the vocabulary short name followed by two underscores followed by the term name, hence:
obi__organism. Here the ChadoField implementation goes in the [field_name].inc file, the ChadoFieldWidget in the
[field_name]_widget.inc file and the ChadoFieldFormatter in the [field_name]_formatter.inc. All new fields must im-
plement all three classes. in the case of our obi__organism field the directory structure is as follows:

/sites/all/modules/tripal/tripal_chado/includes/TripalFields/obi__organism/obi__
→˓organism.inc
/sites/all/modules/tripal/tripal_chado/includes/TripalFields/obi__organism/obi__
→˓organism_widget.inc
/sites/all/modules/tripal/tripal_chado/includes/TripalFields/obi__organism/obi__
→˓organism_formatter.inc (continues on next page)

2.6. Creating a Custom Field 209

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

2.6.2.2 Anatomy of the ChadoField Class

The following describes a ChadoField class from top to bottom. The code for the obi__organism field is shown in
order that it appears in the class with descriptions provided for the meaning of each piece of code. To write your own
class, duplicate the variables and function and customize accordingly. First, let’s look at the definition of the class.
The following line defines the class and indicates that it extends the ChadoField class:

class obi__organism extends ChadoField {

Note: In the line above, the class is named obi__organism. This must be the same name as the directory in which the
field is located. Otherwise, Tripal won’t be able to find the field.

2.6.2.3 Static Member Variables

Next, the TripalField/ChadoField class has a section of public static variables. These are variables that you can
customize to describe your field to Tripal. Here you will provide the default label that appears for the field, and a
description for the field:

// The default label for this field.
public static $default_label = 'Organism';

// The default description for this field.
public static $description = 'The organism to which this resource is associated.';

As described in the section titled Tripal Data Structures, fields that are attached to Bundles are “instances” of a
field. Every field instance can be customized differently on each bundle. The following section of code allows
your field to provide custom settings. Here we want to “hard-code” the term that defines this field using the $de-
fault_instance_settings variable:

// Provide a list of instance specific settings. These can be accessed within
// the instanceSettingsForm. When the instanceSettingsForm is submitted
// then Drupal will automatically change these settings for the instance.
// It is recommended to put settings at the instance level whenever possible.
// If you override this variable in a child class be sure to replicate the
// term_name, term_vocab, term_accession and term_fixed keys as these are
// required for all TripalFields.
public static $default_instance_settings = array(
// The short name for the vocabulary (e.g. schema, SO, GO, PATO, etc.).
'term_vocabulary' => 'OBI',
// The name of the term.
'term_name' => 'organism',
// The unique ID (i.e. accession) of the term.
'term_accession' => '0100026',
// Set to TRUE if the site admin is allowed to change the term
// type. This will create form elements when editing the field instance
// to allow the site admin to change the term settings above.
'term_fixed' => FALSE,
// The format for display of the organism.
'field_display_string' => '<i>[organism.genus] [organism.species]</i>',

);

210 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

Notice in the code above that the elements term_vocabulary, term_name and term_accession are used to define the
vocabulary term that this field maps to. The term_fixed element allows the term to be changed by the site admin if
desired. These elements are required of all TripalFields classes. You must always have these elements. However, the
field_display_string is a variable unique to this obi__organism field! Because this field is displaying the organism
we want to allow the site-admin to customize how the organism name is constructed and displayed. Therefore, the
field_display_string creates this new setting for us. How this setting is used will be described later.

As you may have noticed, a field requires a widget and a formatter. This is why there are three classes for every field.
However, Drupal is flexible and allows fields to be edited or displayed by any number of widgets and formatters. By
default, Tripal provides one widget class and one formatter class for every field. When you write a new field you
will need to do the same and create a new ChadoFieldWidget and ChadoFieldFormatter class (or the corresponding
non-Chado versions if you don’t need Chado). The following variables in the class indicate what are the default widget
and formatter classes (we have not yet created those, but we know their names!):

// The default widget for this field.
public static $default_widget = 'obi__organism_widget';

// The default formatter for this field.
public static $default_formatter = 'obi__organism_formatter';

Drupal allows new instances of fields to be attached to any Bundle. This is really useful for fields like the built in
Image field that Drupal provides. It can be very handy to attache an instance of an Image field to any content type
and viola! your content type now supports images. However, there are some fields that should never be added via the
online Drupal interface. Our organism field is a good example. We probably don’t want to allow end-users to add an
organism field to a Person content type. . . In this case we will programmatically control which fields are attached to
which Bundles. We’ll show that later. But for now, let’s set the no_ui variable to TRUE to prevent users from adding
our new field to any Bundle.

// A boolean specifying that users should not be allowed to create
// fields and instances of this field type through the UI. Such
// fields can only be created programmatically with field_create_field()
// and field_create_instance().
public static $no_ui = TRUE;

Sometimes a field is meant to provide a visualization or some other functionality. An example of this might be a small
search form or link to an analytical service. In these cases we want the field to show up on the web page but it should
not appear anywhere else, such as in Tripal’s web service that provides access to all content. We can set the no_data
variable to TRUE and this will allow it to be seen on the site, but not anywhere else.

// A boolean specifying that the field will not contain any data. This
// should exclude the field from web services or downloads. An example
// could be a quick search field that appears on the page that redirects
// the user but otherwise provides no data.

public static $no_data = FALSE;

Note: Be sure to only set this to TRUE when you are absolutely certain the contents would not be needed in web
services. Tripal was designed so that what appears on the page will always appear in web services. Aside from the
formatting we see on the website, the content should be the same.

Finally, the last item in our Class variables is the download_formatters. Tripal provides an API that allows tools to
group entities into data collections. Data collections are like “baskets” or “shopping carts”. Entities that are in data
collections can be downloaded into files. If your field is compatible with specific file downloaders you can specify
those here. A file downloader is a special TripalFieldDownloader class that “speaks” certain file formats. Tripal,

2.6. Creating a Custom Field 211

Tripal Documentation, Release 7.x-3.x

by default, provides the TripalTabDownloader (for tab-delimited files), the TripalCSVDownloader (for CSV files), a
TripalNucFASTADownloader for creating nucleotide FASTA files and a TripalProteinFASTADownloader for protein
FASTA files. If your field is compatible with any of these formatters you can specify them in the following array:

If your field is compatible with the TripalTabDownloader, for example, your field will be included as a column in a
tab delimited file where each row represents contents for a given entity.

2.6.2.4 The load() function.

The first function we want to implement in our class is the load() function. This function is responsible for querying
the database and populating the field value. Data that is loaded into the field must be organized in two ways: 1) a value
that is visible to the end-users, and 2) values that are visible to Chado for ensuing update/editing of the correct record
in Chado when the field is edited. Our obi__organism field is designed to be used for multiple Bundles therefore
the code in our load() function must be able to support any Chado table that has a foreign key relationship with the
organism table.

To get started, the load() function receives a single argument. The entity object:

public function load($entity) {

Because this is a ChadoField and the TripalChado module supports this field and maps entities to their “base” record
on Chado, we get something extra. . . we get the record itself

$record = $entity->chado_record;

Having the record helps tremendously. Our obi__organism field is meant to be attached to genomic feature content
types (e.g. genes, mRNA, etc.), germplasm, etc. Therefore, the entity will be a record of one of those types. In the
case of a genomic feature, these come from the feature table of Chado. In the case of germplasm, these records come
from the stock table of Chado. Both of these records have an organism_id field which is a foreign key to the organism
table where we find out details about the organism.

Before we set the values for our field, we need a little bit more information. Remember that all field instances have
settings? The Tripal Chado module also populates for us the name of the Chado table and the column that this field
maps to. Our obi__organism field can be used for multiple Bundles. A gene bundle would map to the feature table of
Chado and a germplasm Bundle would map to the stock table. We need to know what table and column this field is
mapping to: We can get that from the instance object of the class and its settings:

$settings = $this->instance['settings'];
$field_table = $this->instance['settings']['chado_table'];
$field_column = $this->instance['settings']['chado_column'];

Next, we want to get this field name and its type. We obviously know our field name, it is obi__organism. However,
we can get the name programmatically as well. Drupal maintains an “informational” array about our field. Inside of
that field array we can find lots of interesting information such as our field name and its type (Bundle). We’ll need this
when we set our field value. But rather than hard-code it, let’s grab it programmatically from the field name. It’s best
to grab it programmatically because there are cases where the field name could change:

$field_name = $this->field['field_name'];
$field_type = $this->field['type'];

Now, let’s plan how we want our values to appear in our field. The organism record of Chado v1.3 has a genus, species,
abbreviation, infraspecific name, infraspecific type, and a common name. We want these values exposed to the end
user. But, wait. . . when we discussed fields in the Tripal Data Structures section we learned about a name field that
provides names for entities. That field only has one value: the name. Our organism field has multiple values (i.e.
genus, species, etc.). A field can provide more than just one value but values have to be qualified. We have to provide
values in key/value pairs, and the keys must be controlled vocabulary terms. We must use controlled vocabulary terms

212 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

because we want our field to be searchable by other Tripal sites. For example, the ontology term for the word ‘genus’
comes from the TAXRANK vocabulary. Fortunately, almost every column of every table in Chado has been mapped
to a controlled vocabulary term so we don’t need to go hunting for terms. We can use a Chado API function that Tripal
provides for getting the ontology terms associated with every column table in Chado. The following code shows these
functions retrieving the ontology terms for our values from the organism table:

// Get the terms for each of the keys for the 'values' property.
$label_term = 'rdfs:label';
$genus_term = tripal_get_chado_semweb_term('organism', 'genus');
$species_term = tripal_get_chado_semweb_term('organism', 'species');
$infraspecific_name_term = tripal_get_chado_semweb_term('organism', 'infraspecific_
→˓name');
$infraspecific_type_term = tripal_get_chado_semweb_term('organism', 'type_id');

Notice that for our organism fields we can easily get the ontology terms for them using the API function tri-
pal_get_chado_semweb_term. You will also notice a label_term variable. Sometimes a user may want to see
the full name of the organism and not pieces of it in various elements. Therefore, we will provide a label in our list of
values that will concatenate the full organism name. This field is not in our organism table so we hard-code the term
‘rdfs:label’ which is a term from the Resource Data Framework Schema vocabulary that defines a label.

Next, let’s initialize our field’s value to be empty. When setting a field value we must do so in the entity object that got
passed into our load function. The entity is an object and it stores values using the names of the fields. The following
code sets an empty record for our field:

// Set some defaults for the empty record.
$entity->{$field_name}['und'][0] = array(
'value' => array(),

);

Notice that our field has some sub elements. The first is ‘und’. This element corresponds to the “language” of the text.
Drupal supports multiple spoken languages and wants to know the language of text we provide. For Tripal fields we
always use ‘und’ meaning ‘undefined’. The next element is the delta index number. Fields have a cardinality, or in
other words they can have multiple values. For every value we add we increment that index, always starting at zero.
The last element is our ‘value’ element and it is here where we put our element. You may notice that our delta index is
hard coded to 0. This is because an entity can only always have one organism that it is associated with. We will never
have more than one.

Now that we’ve got some preliminary values and we’ve initialized our value array we can start adding values! Before
we do though, let’s double check that we have a record. If we don’t have a record for this entity, we can’t get a value.

if ($record) {

Now if we do have a record we need to get the value The first step is to actually get our organism record. For this we
will find the record variable to be really handy. It already comes pre-populated with every Chado record that has a
foreign-key relationship with our base record. So, in the case of a gene, the record is stored in the feature table which
has an organism_id column which is a foreign key to the organism table. So, we know then that our record object has
an organism_id property and we can get our organism from that. The only exception is the biomaterial table which
uses a field named taxon_id:

if ($field_table == 'biomaterial') {
$organism = $record->taxon_id;

}
else {

$organism = $record->organism_id;
}

We can easily get all of the values we need from this organism object. We can now access the values for this organism

2.6. Creating a Custom Field 213

Tripal Documentation, Release 7.x-3.x

using the Chado organism table column names (e.g. $organism->genus, $organism->species).

$label = chado_replace_tokens($string, $organism);
$entity->{$field_name}['und'][0]['value'] = array(
$label_term => $label,
$genus_term => $organism->genus,
$species_term => $organism->species,

);
// The infraspecific fields were introduced in Chado v1.3.
if (property_exists($organism, 'infraspecific_name')) {

$entity->{$field_name}['und'][0]['value'][$infraspecific_type_term] = NULL;
$entity->{$field_name}['und'][0]['value'][$infraspecific_name_term] = $organism->

→˓infraspecific_name;
if ($organism->type_id) {
$entity->{$field_name}['und'][0]['value'][$infraspecific_type_term] = $organism->

→˓type_id->name;
}

}

In the code above we are populating our value array and we’re using the controlled vocabulary terms we retrieved
earlier as the keys.

Okay, so, we have our values set. However, remember, our fields must support two types of values: 1) those for end
users; and 2) those that allow us to save values in Chado if the field is edited. If you look at our value array above
you will recognize that the entity to which this field is loading data for is for a feature or stock or library, etc. This
field represents the organism for a record from one of those tables. If someone wants to edit the entity and change the
organism then effectively we need to change the organism_id of that table. But in our values array we don’t have the
organism_id we only have data about the organism. How will Tripal know how to change the organism for an entity
if edited? To do help Tripal out, we have to create special key/value pair to add to our values. These are values that
are not meant to be seen by the end-user. The organism_id is a good example of such a value. To create these values
we create a key with a special naming scheme: use “chado-” as a prefix, followed by the table name (e.g. feature),
followed by two underscores and finally the column name (e.g. organism_id). The following code shows the creation
of this value name:

// Set the linker field appropriately.
if ($field_table == 'biomaterial') {

$linker_field = 'chado-biomaterial__taxon_id';
}
else {

$linker_field = 'chado-' . $field_table . '__organism_id';
}

If our entity were of type “gene” then our field_table is feature. Therefore, our linker_field variable would be chado-
feature__organism_id. Next, we need to add this to our value:

$entity->{$field_name}['und'][0][$linker_field] = $organism->organism_id;

Notice, though, that we did not add this value inside the ‘value’ key like we did above for our end-user, such as the
following:

$entity->{$field_name}['und'][0]['value'])

Instead, we put it in at the same level as ‘value’:

$entity->{$field_name}['und'][0][$linker_field]

We do this because anything in the ‘value’ element is intended for the end-user. Anything outside of the ‘value’ is
meant for Tripal. Adding the organism ID to this field as a Tripal “hidden” value allows Tripal to recognize where

214 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

these values really came from. When writing your own fields, you must include any values as “hidden” Tripal values
that need to be written to the database table. A good way to remember if your value should be visible to the end-user
or hidden for Tripal is to ask yourself these questions:

1. Does the user need this value? If yes, put it in the ‘value’ element.

2. Does Tripal need the value when writing back to the Chado table? If yes, put it as a hidden element.

3. Does the user need to see the value and will this same value need to be written to the table? If yes, then you
have to put the value in both places.

For our obi__organism field it is for entities with records in the feature, stock, library, etc. tables. Those tables only
have an organism_id to represent the organism. So, that’s the database column this field is supporting. We therefore,
need to put that field as a hidden field, and all the others are just helpful to the user and don’t get saved in the feature,
stock or library tables. So, those go in the values array.

Now, we’re at a good stopping point with our field! We can close out our if($record) statement and the function:

}
}

2.6.2.5 elementInfo() function

The elementInfo() function is necessary to integrate your new field with Drupal Views and Tripal Web Services. Drupal
needs to know what data elements your field provides and Tripal needs to know what vocabulary terms to use for each
of the data elements. Related to vocabulary terms, all fields are assigned an ontology term for the field itself. Every
field has to have an one. But when a field provides more than just a single data value it must also provide vocabulary
terms for any sub elements as well. Our obi__organism field provides the genus, species, etc. sub elements and,
therefore, we need to describe these to Drupal and Tripal. The elementInfo() function from the obi_organism field is
as follows:

/**
* @see TripalField::elementInfo()

*/
public function elementInfo() {

$field_term = $this->getFieldTermID();

$genus_term = chado_get_semweb_term('organism', 'genus');
$species_term = chado_get_semweb_term('organism', 'species');
$infraspecific_name_term = chado_get_semweb_term('organism', 'infraspecific_name');
$infraspecific_type_term = chado_get_semweb_term('organism', 'type_id');

return array(
$field_term => array(

'operations' => array('eq', 'contains', 'starts'),
'sortable' => TRUE,
'searchable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:complexType',
'elements' => array(

'rdfs:label' => array(
'searchable' => TRUE,
'name' => 'scientific_name',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => FALSE,
'type' => 'xs:string',
'readonly' => TRUE,

(continues on next page)

2.6. Creating a Custom Field 215

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

'required' => FALSE,
),
$genus_term => array(
'searchable' => TRUE,
'name' => 'genus',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:string',
'required' => TRUE,

),
$species_term => array(
'searchable' => TRUE,
'name' => 'species',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:string',
'required' => TRUE,

),
$infraspecific_name_term => array(
'searchable' => TRUE,
'name' => 'infraspecies',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:string',
'required' => FALSE,

),
$infraspecific_type_term => array(
'searchable' => TRUE,
'name' => 'infraspecific_type',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:integer',
'required' => FALSE,

),
'entity' => array(
'searchable' => FALSE,

),
),

),
);

}

The code above generates and returns an associative array that provides metadata about the field and its elements. The
array is structured such that the first-level key is the term for the field. Details about the field are at the second-level
and all sub elements are contained in a ‘elements’ key. In the following code the terms for the field and sub elements
are retrieved using TripalField class functions and Tripal API calls:

$field_term = $this->getFieldTermID();

$genus_term = chado_get_semweb_term('organism', 'genus');
$species_term = chado_get_semweb_term('organism', 'species');
$infraspecific_name_term = chado_get_semweb_term('organism', 'infraspecific_name');

(continues on next page)

216 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

$infraspecific_type_term = chado_get_semweb_term('organism', 'type_id');

return array($field_term => array(
'operations' => array('eq', 'contains', 'starts'),
'sortable' => TRUE,
'searchable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:complexType',
'elements' => array(

Notice the value for $field_term variable was easily obtained by calling the $this->getFieldTermID function and all of
the terms for the elements were obtained using the chado_get_semweb_term function which maps table columns in the
Chado database schema to ontology terms. The operations key indicates which search filter operations are supported
for the field as a whole. For this example these include ‘eq’ (for equals), ‘contains’ and ‘starts’ (for starts with). The
field is sortable and searchable so those values are set to TRUE. Later, we will learn how to implement the sorting,
searching and filtering that the field will support. For now we know we want them so we set the values accordingly.
Additionally, the field allows updating so ‘readonly’ is set to FALSE. By convention, the ‘type’ of a field follows the
XML data types for simple types (https://www.w3schools.com/xml/schema_simple.asp) and Complex types (https:
//www.w3schools.com/xml/schema_complex.asp) that have multiple elements. Because our obi__organism field has
subelements and is not a single value, the field type is ‘xs:complexType’.

The array keys just mentioned fully describe our field to Drupal and Tripal. Next we will define the sub elements in
the same way, and these go in the ‘elements’ key. First, we will describe the label. Our obi__organism field provides
a handy label element that concatenates the genus, species and infraspecific name into one simple string. Therefore,
we need to describe this element in the same way we described the field itself. In the code below that the key is set to
‘rdfs:label’ (which is the controlled vocabulary term for a label) and that the child keys are the same as for the field.

'elements' => array(
'rdfs:label' => array(
'searchable' => TRUE,
'name' => 'scientific_name',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => FALSE,
'type' => 'xs:string',
'readonly' => TRUE,
'required' => FALSE,

),

Notice that our field will allow searching, provides a variety of search filter options, is sortable and defines the type as
‘xs:string’. The remaining elements follow the same pattern. As another example, here is the genus element:

$genus_term => array(
'searchable' => TRUE,
'name' => 'genus',
'operations' => array('eq', 'ne', 'contains', 'starts'),
'sortable' => TRUE,
'readonly' => FALSE,
'type' => 'xs:string',
'required' => TRUE,

),

The major difference in the code above is that the term is provided by the variable $genus_term.

Finally, our obi__organism field provides an ‘entity’ element that provides information for a published organism entity.
We do not provide any filtering, searching or sorting of those values. So the final element appears as:

2.6. Creating a Custom Field 217

https://www.w3schools.com/xml/schema_simple.asp
https://www.w3schools.com/xml/schema_complex.asp
https://www.w3schools.com/xml/schema_complex.asp

Tripal Documentation, Release 7.x-3.x

'entity' => array(
'searchable' => FALSE,

),

In summary, you will always want to describe your field and every element of your field in the array returned by the
elementInfo function. However, you do not need to provide sorting, filtering or querying for every element. If your
field is read-only and simply provides values you should still describe these elements but you would set the meta
data keys appropriately for the behavior of your field. Also, you only need to describe elements in the values array
returned by your load function. Remember, there may be other key/value pairs (such as those used to help coordinate
inserts/updates into Chado) but those do not need to be described here because they are never seen by the end-user.

2.6.2.6 query() function

As described above in the elementInfo function section, some fields and elements of fields are searchable. if the
elementInfo array indicates that the field is searchable and has operations (i.e. filters) then we must provide a way for
those queries to occur. This is where the query() function is needed. The following is example code from the query
function of our obi__organism field:

public function query($query, $condition) {
$alias = $this->field['field_name'];
$operator = $condition['operator'];

$field_term_id = $this->getFieldTermID();
$genus_term = $field_term_id . ',' . chado_get_semweb_term('organism', 'genus');
$species_term = $field_term_id . ',' . chado_get_semweb_term('organism', 'species

→˓');
$infraspecific_name_term = $field_term_id . ',' . chado_get_semweb_term('organism

→˓', 'infraspecific_name');
$infraspecific_type_term = $field_term_id . ',' . chado_get_semweb_term('organism

→˓', 'type_id');

// Join to the organism table for this field.
$this->queryJoinOnce($query, 'organism', $alias, "base.organism_id = $alias.

→˓organism_id");

// If the column is the field name then we're during a search on the full
// scientific name.
if ($condition['column'] == $field_term_id or

$condition['column'] == $field_term_id . ',rdfs:label') {
if (chado_get_version() <= 1.3) {

$query->where("CONCAT($alias.genus, ' ', $alias.species) $operator :full_name
→˓", array(':full_name' => $condition['value']));

}
else {

$this->queryJoinOnce($query, 'cvterm', $alias . '_cvterm', 'base.
→˓infraspecific_type = ' . $alias . '_cvterm.type_id', 'LEFT OUTER');

$query->where("CONCAT($alias.genus, ' ', $alias.species, ' ', " . $alias . "'_
→˓cvterm.name', ' ', $alias.infraspecific_name) $operator :full_name", array(':full_
→˓name' => $condition['value']));

}
}

// If the column is a subfield.
if ($condition['column'] == $species_term) {

$query->condition("$alias.species", $condition['value'], $operator);

(continues on next page)

218 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

}
if ($condition['column'] == $genus_term) {

$query->condition("$alias.genus", $condition['value'], $operator);
}

if ($condition['column'] == $infraspecific_name_term) {
$query->condition("$alias.infraspecific_name", $condition['value'], $operator);

}

if ($condition['column'] == $infraspecific_type_term) {
$this->queryJoinOnce($query, 'cvterm', 'CVT', "base.type_id = CVT.cvterm_id");
$query->condition("CVT.name", $condition['value'], $operator);

}
}

The code above is how the field tells Drupal and Tripal how to find and filter the records that this field corresponds to.
First, we retrieve the field alias and operators, and as with the load and elementInfo functions we get the controlled
vocabulary terms for our field and field elements:

$alias = $this->field['field_name'];
$operator = $condition['operator'];

$field_term_id = $this->getFieldTermID();
$genus_term = $field_term_id . ',' . chado_get_semweb_term('organism', 'genus');
$species_term = $field_term_id . ',' . chado_get_semweb_term('organism', 'species');
$infraspecific_name_term = $field_term_id . ',' . chado_get_semweb_term('organism',
→˓'infraspecific_name');
$infraspecific_type_term = $field_term_id . ',' . chado_get_semweb_term('organism',
→˓'type_id');

Next, our knowledge of Chado is needed. We know that our obi__organism field will load data from the organism
table. Therefore, our search must occur there.

2.6.3 Creating a Custom Widget

In Drupal/Tripal terminology, widget refers to the form elements for a specific Tripal Field on the “Edit” form of a
piece of Tripal Content. For example, the obi__organism field widget creates the “Organism” drop-down on the
edit form of a gene. All fields come with a default widget; however, you can create a custom widget if the default one
doesn’t meet your needs.

Note: This guide assumes you already have your widget class file created. For more information, see Manual Field
Creation or, Easier Field Creation: Tripal Field Generator.

Note: If you are only creating a widget and not the whole field, you still need to follow the ex-
pected directory structure. For example, if your widget is going to be named obi__organism_fancy
then your file would be [your_module]/includes/TripalField/obi__organism_fancy/
obi__organism_fancy_widget.inc.

2.6. Creating a Custom Field 219

Tripal Documentation, Release 7.x-3.x

2.6.3.1 The Form

The form elements of your widget are defined in the form() method of your widget according to the Drupal Form
API. As such the $widget variable is actually a nested associative array describing what the widget portion of the
form should look like. For example, the following is how the obi__organism widget creates the drop-down.

/**
* @see TripalFieldWidget::form()

*/
public function form(&$widget, &$form, &$form_state, $langcode, $items, $delta,
→˓$element) {

$field_name = $this->field['field_name'];
$field_table = $this->instance['settings']['chado_table'];
$linker_field = 'chado-' . $field_table . '__organism_id';

// The value presented to the user via load.
// If $items['delta']['value'] is set then we are updating and already have this
// information. As such, simply save it again.
$widget['value'] = array(
'#type' => 'value',
'#value' => array_key_exists($delta, $items) ? $items[$delta]['value'] : '',

);

// Pull out the value previously saved to be used as the default.
$organism_id = 0;
if (count($items) > 0 and array_key_exists($linker_field, $items[0])) {
$organism_id = $items[0][$linker_field];

}

// Define a drop-down form element where the options are organisms retrieved using
// the Tripal API, the default is what we looked up above, and the title and
// description are those set when defining the field.
$widget[$linker_field] = array(
'#type' => 'select',
'#title' => $element['#title'],
'#description' => $element['#description'],
'#options' => chado_get_organism_select_options(FALSE),
'#default_value' => $organism_id,
'#required' => $element['#required'],
'#delta' => $delta,

);

}

At a minimum, the form must have a value element. For Tripal, the value element of a field always corresponds
to the value that is presented to the end-user either directly on the page (with formatting) or via web services, or some
other mechanism. Convention is to store the value of the field as a hidden value form element as is shown in the
above example.

Note: For more information on how to use the Drupal Form API, check out the official Drupal Documentation.

Note: The current item is saved in $items[$delta] as an array where the keys will match those set by the field
load() function.

220 Chapter 2. Developer’s Guide

https://api.drupal.org/api/drupal/developer%21topics%21forms_api_reference.html/7.x
https://api.drupal.org/api/drupal/developer%21topics%21forms_api_reference.html/7.x
https://www.drupal.org/docs/7/api/form-api

Tripal Documentation, Release 7.x-3.x

2.6.3.2 Validation

The validate() function of your widget allows you to confirm that the values entered by the user are valid. It is
recommended to consider each form element you created above and consider what is required for that element to be
entered “correctly”. For example, for an organism drop-down, the organism chosen must exist in our chado database
(since this is a ChadoFieldWidget). Luckily this doesn’t need to be validated since Drupal ensures only elements
in our select list are chosen.

Warning: The value key of this field must be set in the $form_state['values'] array to a TRUE value
(e.g. a string or non-zero integer) anytime data is entered by the user.

Note: For more information on how to validate your data, see the official Drupal Form Validation Documentation

2.6.3.3 Saving the Data

The Drupal Storage Backend handles saving of your widget data. As such, you do not and should not insert, update
or delete the data yourself. It should happen automatically, assuming you’ve followed the conventions of the specific
storage backend.

Chado Fields utilize the chado storage backend to save your data. Thus to ensure your data is saved, you set the
columns of your chado table to the values you want them set via the $form_state['values'] array using the
chado-[table]__[column] convention. This should be done at the end of the validation function above, if the
data submitted is valid.

For our obi__organism example, the drop-down returns the chado organism_id of the record chosen by the user.
We would like to save that as the organism_id of the chado table the field references, which the following code
specifies.

/**
* @see TripalFieldWidget::validate()

*/
public function validate($element, $form, &$form_state, $langcode, $delta) {

$field_name = $this->field['field_name'];
$field_table = $this->instance['settings']['chado_table'];
$linker_field = 'chado-' . $field_table . '__organism_id';

//...
// Validate your data here
//...

// In this case, if you have an organism_id, then your user selected this field.
$organism_id = $form_state['values'][$field_name]['und'][0][$linker_field];
if ($organism_id > 0) {
$form_state['values'][$field_name]['und'][0]['value'] = $organism_id;
// This is where we tell the storage backend what we want to save.
// Specifically, that we want to save $organism_id to $field_table.organism_id
$form_state['values'][$field_name]['und'][$delta][$linker_field] = $organism_id;

}
}

But what do you do if the record you want to link to via foreign key constraint doesn’t yet exist? Luckily the Chado
Storage API has a solution for this as well. Consider the example of the sbo__relationship_widget. When

2.6. Creating a Custom Field 221

https://www.drupal.org/docs/7/creating-custom-modules/validating-the-data

Tripal Documentation, Release 7.x-3.x

this widget is on the create form for a given content type, we will first need to create the base record before we can
create a relationship to it. This is done by setting the values you do know (e.g. chado-feature__type_id and
chado-feature__object_id) but not setting the column mapping to the base record. The Chado Storage API
will then fill it in automatically once the base record is created.

/**
* @see TripalFieldWidget::validate()

*/
public function validate($element, $form, &$form_state, $langcode, $delta) {

$field_name = $this->field['field_name'];
$field_table = $this->instance['settings']['chado_table'];
$linker_field = 'chado-' . $field_table . '__organism_id';

//...
// Validate your data here
//...

//...
// Determine the subject_id, object_id and type_id based on user input.
// User input is found in $form_state['values'].
//...

// If we have all the keys then set the columns as in the obi__organism ex.
if ($subject_id && $object_id && $type_id) {
// Set all chado fields to their values.

}
// Otherwise, maybe we are creating the entity...
// The storage API should handle this case and automatically add the key in // once

→˓the chado record is created... so all we need to do is set the
// other columns.
elseif ($subject_name && $object_id && $type_id) {
$form_state['values'][$field_name][$langcode][$delta]['value'] = 'value must be

→˓set but is not used';
$form_state['values'][$field_name][$langcode][$delta]['chado-' . $field_table . '_

→˓_' . $object_id_key] = $object_id;
$form_state['values'][$field_name][$langcode][$delta]['chado-' . $field_table . '_

→˓_type_id'] = $type_id;
// Notice that the subject_id is not set here.

}
// Otherwise, we don't have a value to insert so leave them blank.
else {
// Set all chado fields to empty string.

}

Drupal typically does not provide a submit hook for fields because, as mentioned above, saving should be done by the
storage backend. However, the TripalField provides a TripalFieldWidget::submit() to allow for behind-
the-scenes actions to occur. This function should never be used for updates, deletes or inserts for the Chado table
associated with the field as these actions should be handled by the storage backend.

However, it is permissible to perform inserts, updates or deletions within Chado using this function. Those op-
erations can be performed if needed but on other tables not directly associated with the field. An example is the
chado.feature_synonym table. The chado_linker__synonym field allows the user to provide a brand
new synonym and it must add it to the chado.synonym table prior to the record in the chado.feature_synonym table.

222 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

2.6.4 Creating a Custom Formatter

The third component of a field is the formatter. Thus far we have introduced how to create a field class and a widget
class for a field. The field class is responsible for describing the field, loading data into it, and providing search support.
The widget class provided a Drupal form for online editing of the field. Finally, the formatter is responsible for display
of the field on a Tripal site.

Note: This guide assumes you already have your formatter class file created. For more information, see Manual Field
Creation or, Easier Field Creation: Tripal Field Generator.

The formatter class is the simplest of all the Tripal field classes. Here we will again use the obi__organism field that
comes with the tripal_chado module.

2.6.4.1 The view() function.

In most cases the only function you need to implement is the view() function. This function is called whenever your
field needs to be displayed on a page. The following code is from the obi__organism_formatter.inc class
file.

1 public function view(&$element, $entity_type, $entity, $langcode, $items, $display) {
2

3 if ($items[0]['value']) {
4 $content = $items[0]['value']['rdfs:label'];
5 if (array_key_exists('entity', $items[0]['value'])) {
6 list($entity_type, $entity_id) = explode(':', $items[0]['value']['entity']);
7 $content = l(strip_tags($items[0]['value']['rdfs:label']), 'bio_data/' .

→˓$entity_id);
8 }
9

10 // The cardinality of this field is 1 so we don't have to
11 // iterate through the items array, as there will never be more than 1.
12 $element[0] = array(
13 '#type' => 'markup',
14 '#markup' => $content,
15);
16 }
17 }

In the code above the input arguments have the following meaning:

• $element is the first argument. It is an array into which you should set the contents to be displayed.

• $entity_type will always have the value Tripal Entity.

• $entity is the entity object which contains all information about the entity including the loaded data
values.

• $langcode is the language. This is used by Drupal to provide translations of data into other spoken
languages. By default, Tripal does not use a language, as biological data is generally language agnostic.
Consider for example a gene sequence or a feature coordinate.

• $items is an array containing all of the loaded data for this field.

• $display is the name of the display such as full page, a teaser, etc. Currently, Tripal does not distinguish
between displays.

2.6. Creating a Custom Field 223

Tripal Documentation, Release 7.x-3.x

The purpose of the view() function is to iterate through the values in the $items array, and format them into an
appropriate display for viewing. Here you must remember the structure of the data in the $items array.

To demonstrate this function, let’s look at what we expect in our $items array. Using the Citrus sinesis organism
from the User’s Guide. We would expect an items array to look like the following:

$items = [
0 => [
"value" => [

"rdfs:label" => "Citrus sinensis",
"rdfs:type" => "Organism",
"local:abbreviation" => "C. sinensis",
"TAXRANK:0000005" => "Citrus",
"TAXRANK:0000006" => "sinensis",
"entity" => "TripalEntity:3",

],
"chado-feature__organism_id" => 12,

],
];

You may recall that the $items array structure is the same as that created by the load() function described in
the Manual Field Creation page. Note that each key in the value array is an accession for a controlled vocabulary
term. These accessions are used to unambiguously describe the value. To display the organism on a page we need the
element named rdfs:label. Thus, we set the $content variable to contain this value as shown on line 4 of the
view() function above.

Because our organisms are also published entities we want to link to their respective pages each time an organism is
displayed. Because the value array has an element named entity we know that this item is published. Lines 5-6
of the view() function shown above use this information to create a clickable link to the organism page. Finally, the
$element argument is set to provide content of type markup. This $element array is a Drupal renderable array.

Lastly, notice the element named chado-feature__organism_id. This element is at the same level as the
value element. This data is meant to be used internally by the field. It maps this fields values to the appropriate table
in Chado where the data is stored.

Warning: You should never show the user any data that is outside of value element. Remember that your field
can be shown by other viewers, including web services. By ensuring that data in the value element is mean to be
displayed we ensure that information on the web page, web services, or any other future form of display is always
consistent.

In summary, the following should be observed when processing the $items array for viewing:

• A field with only one value (a cardinality of 1) will always have only one element in the $items array and can
use the index 0. This is what has been done in this example code.

• A field with more than one value can have any number of elements in the $items array. You should therefore
iterate through all of them.

• For every index in $item you should create a matching index in $element to display the data found in that
$item.

• If there are no items, then nothing you return will be displayed.

• For each element in the $items array there is a value key. Only the data in the value key should be shown
to the user.

• Each element in the $items array may have more than a value key. These values are meant to help manage
the data.

224 Chapter 2. Developer’s Guide

https://www.drupal.org/docs/7/api/render-arrays/render-arrays-overview

Tripal Documentation, Release 7.x-3.x

Warning: You should never have SQL statements or any API calls that retrieve data in the formatter view()
function. The formatter should strictly format data for viewing.

2.6.4.2 Creating Pagers

The example shown in the previous section was for a field that will always only contain a single element. However
some fields may contain a large number of elements. Consider an mRNA and it’s relationships to subfeatures: exons,
5’ UTRs, 3’UTRs, CDS, etc.). A large mRNA can have many relationships. Alternatively, consider the case where a
genetic map content type may have a field that lists all of the markers on the map. Such a list could become extremely
long on the page. In these cases it may be best to only list a few items at a time and to provide a pager to let the user
cycle through the items. An example of a pager added to the bottom of relationships is shown in the example below.

To create a pager we first need to calculate the number of items we want to display per page and the total number of
pages required to display all of the data.

$items_per_page = 10;
$total_records = count($items);
$total_pages = (int) ($total_records / $items_per_page) + 1;

Next, we must initialize the pager by calling the pager_default_initialize function. We pass it the total
number of records, the number of items per page and the index (i.e. $pelement) for this pager on the page.

2.6. Creating a Custom Field 225

Tripal Documentation, Release 7.x-3.x

$pelement = 0;
$current_page = pager_default_initialize($total_records, $items_per_page, $pelement);

The call to pager_default_initialize will return the current page. The current page is a numeric number
indicating which page the pager is currently showing. The first time the page is loaded this will always be the first
page. Each time the user navigates to other pages by clicking the “next” link or the numeric links then this view()
function is called and the current page is set to the page being viewed. Next, we must theme the pager so that it follows
the look-and-feel prescribed for the site. For this we use the Drupal theme() function.

$pager = theme('pager', array(
'tags' => array(),
'element' => $pelement,
'parameters' => array(),
'quantity' => $total_pages,

));

By default, all links in the pager cause the page to reload. We do not want the page to reload, rather we only want
to update the contents of the field. The TripalFieldFormatter class provides a function named ajaxifyPager to
convert a pager into an AJAX pager:

$pager = $this->ajaxifyPager($pager, $entity);

Now that we have a pager, it has been setup for AJAX and we know the current page that the user is viewing we can
now display only the items from the $items array that are appropriate for the page being viewed. A common way to
provide multiple items on a page is within a table. When we set the $element array we need to be sure to provide
both the content and the pager:

$element[0] = array(
'#type' => 'markup',
'#markup' => $content . $pager,

);

2.6.4.3 The settingsForm() Function.

Sometimes you may want to provide some control to the site developer for the formatter. For example, the
sbo__relationship_formatter allows the site developer to customize the title that appears above the table
that houses relationships and the text the appears if there are no relationships. By default the title is “Relationships”
and the empty text indicates there are no relationships. Both are a bit too generic. The settingsForm() function
allows you to provide a Drupal form for the field that appears on the Administer > Structure > Tripal Content Types
on any content type’s manage display page:

226 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

The form shown in the screenshot above is provided by the settingsForm() function. The following code gener-
ates this form:

1 public function settingsForm($view_mode, $form, &$form_state) {
2

3 $display = $this->instance['display'][$view_mode];
4 $settings = $display['settings'];
5 $element = array();
6 $element['title'] = array(
7 '#type' => 'textfield',
8 '#title' => 'Table Header',
9 '#default_value' => array_key_exists('title', $settings) ? $settings['title'] :

→˓'Relationship',
10);
11 $element['empty'] = array(
12 '#type' => 'textfield',
13 '#title' => 'Empty text',
14 '#default_value' => array_key_exists('empty', $settings) ? $settings['empty'] :

→˓'There are no relationships',
15);
16

17 return $element;
18 }

The form is typical of any form. Note, however that the #default_value is set using the current settings values.

A settings form is useful but it only works when Drupal knows what settings you want for your field. You must
provide the settings names (e.g. “title” and “empty” in this case) when you attach your field to a given content type
(i.e. bundle). You tell Drupal to attach this field to a content type using the hook_bundle_instances_info
function. See the Attach Fields to Content Types to learn more about this function. Briefly, the display section of
the info array for the sbo__relationship field contains the following settings for the display:

'display' => array(
(continues on next page)

2.6. Creating a Custom Field 227

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

'default' => array(
'label' => 'hidden',
'type' => 'sbo__relationship_formatter',
'settings' => array(

'title' => 'Relationships',
'empty' => 'There are no relationships'

),
),

),

Warning: In order for the settingsForm() implemented to be available on the “Manage Display” page, you
must also implement settingsSummary() as described below.

2.6.4.4 The settingsSummary() Function.

The settingsSummary() function provides a summary of the current settings values for a field on the manage
display page. The following shows the same relationship field from the previous section, but with the settings form
closed, and a summary of the current values shown:

An example of the settingsSummary() function that generates the summary in the image above is as follows:

1 public function settingsSummary($view_mode) {
2 $display = $this->instance['display'][$view_mode];
3 $settings = $display['settings'];
4

5 $summary = t('Title: @title
Empty: @empty',
6 array(
7 '@title' => $settings['title'],
8 '@empty' => $settings['empty'])
9);

10

11 return $summary;
12 }

228 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

2.6.5 AJAX Responsive Formatters

Some fields need to be responsive. For example, a user might select an analysis or organism to display data from.
Drupal developers often use AJAX to rebuild the page based on user input.

2.6.5.1 Drupal and AJAX

Drupal has its own special way of doing AJAX! This is important to ensure that changes are executed in the correct
order. You should read the documentation carefully! The Drupal AJAX API works best on forms, and field formatters
are not forms. Instead, they are renderable arrays. As such, rather than accepting $form and &$form_state, they
accept &$element, $entity_type, $entity, $langcode, $items, and `$display, where $element is
the renderable array.

This means if you want to add an AJAX callback to a field formatter, you need a separate form function that gets
added in using drupal_get_form(). If you do this, you can build the AJAX as Drupal expects it.

2.6.5.2 Example form and field

Here’s an example form file below: as you can see it’s a standard form following Drupal AJAX
conventions. We provide a rendered_maps fieldset with the prefix defining the wrapper
(examplemap-featuremap-organism-selector-wrapper). This is what we want to re-draw de-
pending on what the user selects.

The selector has specified that wrapper, and the AJAX callback function
examplemap_organism_featuremap_callback. We then define that function to simply return the
piece of the form that should be rebuilt: the rendered_maps fieldset!

/**
* AJAX-enabled form for [field formatter name].

*/
function tripal_example_map_organism_featuremap_selector_form($form, &$form_state,
→˓$select) {

$selected = 0;

// $form_state['values'] will be set if the form has been submitted via AJAX
if (isset($form_state['values']['featuremap_select'])) {
$selected = isset($form_state['values']['featuremap_select']);

}

// We need to provide a container for Drupal AJAX to replace.
// Here we use a fieldset with a set ID which we can refer to below.
$form['rendered_maps'] = [
'#type' => 'fieldset',
'#collapsible' => FALSE,
'#prefix' => '<div id="examplemap-featuremap-organism-selector-wrapper">',
'#suffix' => '</div>',

];

// This is the element which will trigger AJAX.
$form['rendered_maps']['featuremap_select'] = [
'#type' => 'select',
'#options' => $select,
'#title' => 'Please select a map to view',
'#default_value' => $selected,

(continues on next page)

2.6. Creating a Custom Field 229

https://api.drupal.org/api/drupal/includes%21ajax.inc/group/ajax/7.x
https://www.drupal.org/docs/7/api/render-arrays/render-arrays-overview

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

'#ajax' => [
// Your Drupal AJAX callback
// which simply returns the form element to be re-rendered.
'callback' => 'examplemap_organism_featuremap_callback',
// This should be the ID you set above on your container to be replaced.
'wrapper' => 'examplemap-featuremap-organism-selector-wrapper',
'effect' => 'fade',

],
];

// Check the AJAX submitted values...
$chosen = 0;
if (isset($form_state['values']['featuremap_select'])) {
$chosen = $form_state['input']['featuremap_select'];

}

// If the user chose an option (triggered AJAX).
if ($chosen != 0) {
// Then change the form accordingly...
// Notice that you react to the AJAX change in the form
// not in the AJAX callback.
$mini_form = tripal_example_map_genetic_map_overview_form([], $form_state,

→˓$chosen);

$form['rendered_maps']['map'] = $mini_form;

return $form;
}

return $form;
}

/**
* The callback will return the part of the form you want to re-draw.

*/
function examplemap_organism_featuremap_callback($form, &$form_state) {

return $form['rendered_maps'];
}

In the field formatter, we simply add this form and put the markup in the element:

/**
* In our Our__field_formatter.inc

*/
public function view(&$element, $entity_type, $entity, $langcode, $items, $display) {

// Select choices would be loaded in the base field's load method.
$select = $items[0]['select_choices'];

$form = drupal_get_form('tripal_example_map_organism_featuremap_selector_form',
→˓$select);
$content = drupal_render($form);
$element[] = [

'#type' => 'markup',
'#markup' => $content,

];
(continues on next page)

230 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

return $element;
}

2.6.6 Attach Fields to Content Types

In summary, creation of a new field requires creation of three classes that inherit from the TripalField,
TripalFieldWidget and TripalFieldFormatter base classes. If the fields are created correctly and placed
in the includes/TripalFields directory of your module then Tripal will automatically find them. However,
the field is not yet attached to any content type. They must be attached. Fields can be attached programmatically or
via the online Drupal interface by a site admin.

2.6.6.1 The hook_bundle_fields_info() function

The three TripalField classes simply define how the field will function, but Drupal does not yet know
about the field. The hook_bundle_fields_info function tells Drupal about your field. It must be
implemented in a custom Drupal module, and provides an array that tells Drupal about the fields and the
classes to use for the field. Suppose we were creating a field named obi__genus which displays the
Genus for a species and we have a custom module named tripal_org2. The hook function would be
named tripal_org2_bundle_fields_info():

1 function tripal_org2_bundle_fields_info($entity_type, $bundle) {
2 $info = [];
3

4 // Make sure this bundle is an organism (OBI:0100026) then we'll attach our
5 // field to display the genus.
6 $term = tripal_load_term_entity(array('term_id' => $bundle->term_id));
7 $term_accession = $term->vocab->vocabulary . '__' . $term->accession;
8 if ($term_accession == 'OBI:0100026') {
9 $field_name = 'obi__genus';

10 $field_type = 'obi__genus';
11 $info[$field_name] = [
12 'field_name' => $field_name,
13 'type' => $field_type,
14 'cardinality' => 1,
15 'locked' => FALSE,
16 'storage' => [
17 'type' => 'field_chado_storage',
18],
19 'settings' => [],
20];
21 }
22

23 return $info
24 }

This function receives as its second argument the $bundle object. This is the bundle that Drupal is requesting new
fields for. For this example we only want to attach the field if the content type is the organism content type. The format
of the returned $info array should have the field name as the key and an array that follows the instructions provided
by Drupal’s field_create_field() function.

The settings indicate the field name, the field type, the cardinality (how many values are allowed), any default settings
and the storage type. Because we expect our data to come from Chado we set the field_chado_storage as the
type. The locked setting is set to FALSE indicating that Drupal will allow the field to be deleted if the site developer
desires.

2.6. Creating a Custom Field 231

https://api.drupal.org/api/drupal/modules%21field%21field.crud.inc/function/field_create_field/7.x

Tripal Documentation, Release 7.x-3.x

When the site administrator navigates to Administer > Structure > Tripal Content Types, clicks on a content type,
and then the manage fields tab, a link appears at the top titled Check for new fields. When that link is clicked, this
hook function is called.

2.6.6.2 Programmatically Attaching Fields

You probably want to programmatically attach fields to content types if your have existing data that you know
should be made available. For example, an organism always has a genus and only one genus. If we have a
field that displays the genus for an organism then we will want it automatically attached on installation of our
module. We can do this programmatically using two hook functions: hook_bundle_fields_info() and
hook_bundle_instances_info(). Both functions are required to attach a field to a content type.

The hook_bundle_instances_info() function.

The previous hook tells Drupal that our field exists and is allowed to be connected to the organism bun-
dle. Next we need to create an actual instance of this field for the bundle. We do this with the
hook_bundle_instances_info() function. The format is the same as the previous hook but the info array
is different. For example:

1 function tripal_org2_bundle_instances_info($entity_type, $bundle) {
2 $info = []
3

4 // Make sure this bundle is an organism (OBI:0100026) then we'll attach our
5 // field to display the genus.
6 $term = tripal_load_term_entity(array('term_id' => $bundle->term_id));
7 $term_accession = $term->vocab->vocabulary . '__' . $term->accession;
8 if ($term_accession == 'OBI:0100026') {
9

10 $field_name = 'obi__genus';
11 $is_required = FALSE;
12 $info[$field_name] = [
13 'field_name' => $field_name,
14 'entity_type' => $entity_type,
15 'bundle' => $bundle->name,
16 'label' => 'Genus',
17 'description' => 'The genus for the organism',
18 'required' => TRUE,
19 'settings' => [
20 'auto_attach' => TRUE,
21 'chado_table' => 'organism',
22 'chado_column' => 'genus',
23 'base_table' => 'organism',
24 'term_accession' => '0000005',
25 'term_vocabulary' => 'TAXRANK',
26 'term_name' => 'Genus',
27],
28 'widget' => [
29 'type' => 'obi__genus_widget',
30 'settings' => [
31 'display_label' => 1,
32),
33],
34 'display' => [
35 'default' => [
36 'label' => 'inline',

(continues on next page)

232 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

37 'type' => 'obi__genus_formatter',
38 'settings' => [],
39],
40],
41];
42 }
43 return $info;
44 }

The format of the returned $info array should have the field name as the key and an array that follows the instructions
provided by Drupal’s field_create_instance() function.

Unique to this info array are the settings related to Chado. Because we expect our data to be loaded from Chado we
must specify these settings:

• base_table: the name of the base table to which the record will be associated. In our case the organism
table of Chado is the base table.

• chado_table: the name of the actual table form which the value of the field will be loaded or saved to. In
our case the organism table is also the chado_table.

• chado_column: the name of the column in the chado_table where the data is loaded from. if the
base_table and chado_table are the same then this is the name of the column. In our case the genus
columns. If the base and chado tables are different then it is the name o the primary key column in the
chado_table

• auto_attach: set this to TRUE if you want the field to automatically be added to an entity when it is
generated for viewing. Set it to FALSE to allow the field to be added via AJAX. For fields that require time to
load setting to FALSE is preferred.

Note: A base table is one that contains the primary records to which ancillary data (e.g. properties, cross refer-
ences, CV terms, publications, contacts, etc) are associated via linker tables. For example some base tables include:
feature, organism, stock, library, etc.). The base_table and chado_table will always be the same
when you are mapping a field to data in a column in a base table. If your field maps data to a “linker” table where
ancillary data is stored then the chado_table will be the linker table.

Notice as well that the display and widget sections list the name of our TripalEntityWidget and TripalEntityFor-
matter classes respectively. This tells drupal to use our widget and formatter classes by default.

When the site administrator navigates to Administer > Structure > Tripal Content Types, clicks on a content type,
and then the manage fields tab, a link appears at the top titled Check for new fields. When that link is clicked, this
hook function is called.

Note: Both hook functions must be properly constructed for the field to be automatically attached to the content type.

2.6.6.3 Allowing Manual Attachment of Fields

Not all fields are created equal. Some fields can be added by the site developer to a bundle and some cannot. When
the TripalField class is implemented for a class the $no_ui parameter is set to indicate if a field can be added
via the web interface or not. See the Manual Field Creation page for more details. But in short the following setting
does not allow a field to be added using the web interface

2.6. Creating a Custom Field 233

https://api.drupal.org/api/drupal/modules%21field%21field.crud.inc/function/field_create_instance/7.x

Tripal Documentation, Release 7.x-3.x

public static $no_ui = TRUE;

The following setting will allow the field to be added:

public static $no_ui = FALSE;

Next, we must let Drupal know that our field exists. We do this by adding an entry to the $info array in the
hook_bundle_fields_info() function described above. This lets Drupal know about our field. However,
because we are not programmatically creating an instance of the field on a content type, but allowing the user to
create them we do not need to implement the hook_bundle_instances_info() function. Instead, we must
implement hook_bundle_create_user_field(). This function is called when the user attempts to add our
new field to a bundle. One field that comes with Tripal is the chado_linker__prop field. Most Chado base
tables have an associated property table (e.g. organismprop, featureprop, stockprop, etc). By default,
the tripal_chado module automatically adds this field to all bundles that have existing properties. It adds a new
instance for every property type. However, new properties can be added to bundle, and the site admin may want to
add those properties via the user interface rather. Therefore, this field has the $no_ui set to TRUE and uses the
hook_bundle_create_user_field() to create the new field instance for the user.

The following code is a snippet from the tripal_chado_bundle_create_user_field function
of the tripal_chado module. Note that it uses the field_create_field function and the
field_create_instance functions directly. The arrays passed to these functions are identical to the $info
arrays of both the hook_bundle_fields_info and hook_bundle_instances_info functions described
above.

1 function tripal_chado_bundle_create_user_field($new_field, $bundle) {
2

3 // Get the table this bundle is mapped to.
4 $term = tripal_load_term_entity(array('term_id' => $bundle->term_id));
5 $vocab = $term->vocab;
6 $params = array(
7 'vocabulary' => $vocab->vocabulary,
8 'accession' => $term->accession,
9);

10 $chado_table = $bundle->data_table;
11 $chado_type_table = $bundle->type_linker_table;
12 $chado_type_column = $bundle->type_column;
13 $chado_type_id = $bundle->type_id;
14 $chado_type_value = $bundle->type_value;
15

16 // We allow site admins to add new chado_linker__prop fields to an entity.
17 // This function will allow us to properly add them. But at this point we
18 // don't know the controlled vocabulary term. We'll have to use the
19 // defaults and let the user set it using the interface.
20 if ($new_field['type'] == 'chado_linker__prop') {
21 $table_name = $chado_table . 'prop';
22

23 if (chado_table_exists($table_name)) {
24 $schema = chado_get_schema($table_name);
25 $pkey = $schema['primary key'][0];
26 $field_name = $new_field['field_name'];
27 $field_type = 'chado_linker__prop';
28

29 // First add the field.
30 field_create_field(array(
31 'field_name' => $field_name,
32 'type' => $field_type,

(continues on next page)

234 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

33 'cardinality' => FIELD_CARDINALITY_UNLIMITED,
34 'locked' => FALSE,
35 'storage' => array(
36 'type' => 'field_chado_storage',
37),
38));
39

40 // Now add the instance
41 field_create_instance(array(
42 'field_name' => $field_name,
43 'entity_type' => 'TripalEntity',
44 'bundle' => $bundle->name,
45 'label' => $new_field['label'],
46 'description' => '',
47 'required' => FALSE,
48 'settings' => array(
49 'auto_attach' => TRUE,
50 'base_table' => $chado_table,
51 'chado_table' => $table_name,
52 'chado_column' => $pkey,
53 'term_vocabulary' => '',
54 'term_accession' => '',
55 'term_name' => ''
56),
57 'widget' => array(
58 'type' => 'chado_linker__prop_widget',
59 'settings' => array(
60 'display_label' => 1,
61),
62),
63 'display' => array(
64 'default' => array(
65 'label' => 'inline',
66 'type' => 'chado_linker__prop_formatter',
67 'settings' => array(),
68),
69),
70));
71 }
72 else {
73 drupal_set_message('Cannot add a property field to this entity. Chado does not

→˓support properties for this data type.', 'error');
74 }
75 }
76 }

Note: It is possible to have a field that is both programmatically attached to some content types but is also al-
lowed to be attached to another content type by the site admin using the web interface. To do this, programmatically
add the field to the content types using the hook_bundle_instances_info function and also implement the
hook_bundle_create_user_field function to support manual adding.

2.6. Creating a Custom Field 235

Tripal Documentation, Release 7.x-3.x

2.6.7 Easier Field Creation: Tripal Field Generator

The Staton Lab has created a specialized tool for automatically generating a ChadoField or TripalField and populating
them with the basic controlled vocabulary and database information. Instructions are available at https://github.com/
statonlab/fields_generator.

2.7 Exporting Field Settings With Drupal Features

This guide will demonstrate using the Drupal Features to export and import Tripal Bundle Field settings.

2.7.1 Why Drupal Features?

Consider a case where we have a development site where we configure a bundle (let’s say the vanilla Analysis bundle)
to have a custom set of Tripal Panes, with fields carefully reorganized into the panes. In particular, we attach a Drupal
File field to it, so we can host FASTA files easily.

Once we’ve configured the field settings, how do we get them to the live site? One option is to open our field
configuration admin UI on both sites, and copy the details one at a time. This method is time consuming and error
prone, although it is relatively safe: we aren’t liable to accidentally break our database this way. Alternatively, trying
to transfer via writing database exports is dangerous, and liable to accidentally break our site.

Is there a better way? By exporting the field configuration as a feature!

Note: Drupal 8 has a feature designed to handle development deployment: Configuration Management! Drupal
Features remains relevant for sharing field configurations across sites, so this guide may remain useful when Tripal
moves to Drupal 8.

Warning: Note that I’m going to talk about features a lot in this post. In the context of the Feature module,
features are exported configurations within your site. It’s important that we don’t confuse this with Chado
features, which are genes, mRNAs, polypeptides, etc.

236 Chapter 2. Developer’s Guide

https://github.com/statonlab/fields_generator
https://github.com/statonlab/fields_generator
https://github.com/statonlab/fields_generator
https://www.drupal.org/docs/7/modules/features
https://www.drupal.org/docs/7/modules/features/features-moving-site-configuration-to-code
https://www.drupal.org/docs/7/modules/features/features-moving-site-configuration-to-code
https://www.phase2technology.com/blog/drupal-8-configuration-management

Tripal Documentation, Release 7.x-3.x

2.7.1.1 Version control

Because features get exported as their own module, this means you can treat them as such. You can initialize a git
repo, store them on GitHub, make discrete versions, and in general benefit from version control for something which
otherwise would only be done via the UI.

2.7.1.2 How many Features?

The features documentation links to a great article about how to manage multiple features. The suggestion that each
bundle be its own module is particularly helpful for Tripal, since we have so many bundles and its a reasonable, discrete
way to manage and deploy configuration. This means that mRNA and gene should be separate feature modules even
though they are both chado.feature content types.

2.7.1.3 A Hazard: Mapping bundle IDs

The main hurdle to overcome when mapping features is converting the field machine names across site. This is because
each field instance is specific to the bundle it’s attached to, and bundle machine-names are from the bundle ID. We
can’t assume bundle IDs are consistent across sites!

So what do we do? Interestingly, roles have a similar problem, and a guide is available for dealing with them.

The general strategy is:

• remove the exported id value from the features.inc file

• use hook alter to fetch the ID on the target deployment setup

In our example below, the bundle ID’s match on our site. For default Tripal bundles, this should generally be the case.

2.7.2 Drupal Features Tutorial

In this tutorial, we’ll add a FASTA file field to the Analysis bundle, and export the configuration.

2.7.2.1 Configuring the bundle fields

To begin, let’s quickly configure a bundle. Navigate to the structure of your site and select Analysis (Admin -
>Structure -> Tripal Content -> Analysis -> Manage Fields). Scroll to the bottom and add a new field of type
File, with a machine name of field_fasta_file, and click Save. Be sure to change the Allowed extensions
parameter to accept .fasta, otherwise, it will only allow .txt files to be uploaded. You may also want to increase the
file size limit, as the default 2MB can be too small for many FASTA files.

We now have to pick a CV term for our field. Because we are providing a FASTA file field, we can use a term such as
FASTA (SWO:0000142). Please see Manually Adding a Term for help loading a term. Once the term is in our DB, we
can assign it to this field.

2.7. Exporting Field Settings With Drupal Features 237

http://kerasai.com/blog/2014/04/08/organizing-features-configuration-managment
https://www.drupal.org/docs/7/modules/features/exportables-and-user-role-ids-in-features
https://www.ebi.ac.uk/ols/ontologies/ero/terms?iri=http%3A%2F%2Fwww.ebi.ac.uk%2Fefo%2Fswo%2FSWO_0000142

Tripal Documentation, Release 7.x-3.x

Now lets configure our field display. Click the Manage Display Tab at the top, and create and enable a “Files” Tripal
Pane, placing our new field in the Pane.

238 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

You can verify your new field is enabled and working by creating a new Analysis and inspecting the “FASTA file”
field.

2.7.2.2 Exporting the bundle field displays

Once we are happy with our bundle field configuration, we can export the display settings using the Drupal Features
module.

First, we enable the Features module using drush: drush pm-enable features -y. This adds a Features area
under Admin -> Structure. Navigate there and choose Create Feature.

The field information we’re looking for is in Field Bases, Field Group, and Field Instances. We can search for
FASTA to find the field base and instance, and “files” (the name of our group) to find the field group.

Note: Both Field Bases and Field Instances will contain the machine name of the field you want to export. Field
Bases contains the site-wide information for a field and Field Instances contains the bundle-specific (i.e. Tripal
Content Type) settings.

Field Group will contain the machine name of the Tripal Pane and allows you to export the grouping settings you set
on the Manage Display Tab.

I’ve also specified a custom path to keep all my Tripal features together under advanced options.

2.7. Exporting Field Settings With Drupal Features 239

Tripal Documentation, Release 7.x-3.x

If we download and unzip our feature module, we can see it includes all the trappings of a Drupal module.

Warning:

As you can see, it makes the assumption that bio_data_2, the bundle ID for Analysis on our source
site, is the correct bundle to configure fields for. However, Tripal makes no guarantee that will hold
true on our target site. One solution would be to manually relabel bio_data_x to the correct bundle
ID. On a smaller scale, this is a reasonable solution. If you aren’t sure what your bundle ID is,

240 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

look in the URL when configuring the fields for it: my constructed URL for example was admin/
structure/bio_data/manage/bio_data_2/fields.

In our case, the site we want to import to has the same Analysis bundle ID, so no further action is necessary.

2.7.2.3 Importing the feature configuration

Go to our target site, all we need to do is download and unpack the .tar file we generated and enable the module
(assuming the bundle ID issue is addressed). I downloaded my file to /var/www/html/sites/all/modules/
custom/analysis_configuration.tar, decompressed it (tar -xvf analysis_configuration.
tar), and enabled it (drush pm-enable tripal_configuration).

The field should now appear when you go to create a new analysis on your target site. To check for yourself, create a
new Analysis with dummy information: you’ll be able to upload a file for the new file field.

Unfortunately, the field still gets imported disabled due to Tripal preference, so we have to go to the display settings
on our target site and enable the Tripal pane/field.

Drag the disabled Tripal pane/field group out of the disabled area, click save, and re-visit your newly created Analysis.
The files pane and uploaded FASTA file will now appear.

2.7. Exporting Field Settings With Drupal Features 241

Tripal Documentation, Release 7.x-3.x

2.8 Creating Custom Data Loaders

Note: This guide is also available as a video on youtube.

The TripalImporter class can be extended to create your own data loader. This class provides many conveniences
to simplify loader construction. For example, it simplifies and unifies input form development, automatically handles
files upload by the user, provides job submission, logging and progress updates. Using the TripalImporter to create
your loader also makes it easy to share your loader with other Tripal users!

To document how to create a new importer, we will describe use of the TripalImporter class within the context of
a new simple importer called the ExampleImporter. This importer will read in a comma-separated file containing
genomic features and their properties (a fictional “Test Format” file). The loader will split each line into feature and
property values, and then insert each property into the featureprop table of Chado using a controlled vocabulary
term (supplied by the user) as the type_id for the property.

Note: Prior to starting your data loader you should plan how the data will be imported into Chado. Chado is a
flexible database schema and it may be challenging at times to decide in to which tables data should be placed. It is
recommended to reach out to the Chado community to solicit advice. Doing so will allow you to share your loader
will other Tripal users more easily!

242 Chapter 2. Developer’s Guide

https://www.youtube.com/watch?v=5y8rDtDQEg0

Tripal Documentation, Release 7.x-3.x

2.8.1 Create a Custom Module

To create your own importer, you first need to have a custom extension module in which the loader will be provided.
If you do not know how to create a module, see the section titled Creating a Custom Module for further direction.
Providing your new importer within a custom module will allow you to more easily share your loader with other
Tripal users. Any site that downloads and enables your extension module will be able to use your data loader. For this
document we will describe creation of a new importer in a module named tripal_example_importer.

2.8.2 Create the Class File

To define a new class that extends TripalImporter, you should create a new class file with a .inc extension
within your custom module in the directory: includes/TripalImporter/. If this is your first importer, then
you will need to create this directory. For the example described here, we will create a new TripalImporter class
named ExampleImporter. Therefore, we must name the file the same as the class (with the .inc extension) and
place the file here: tripal_example_importer/includes/TripalImporter/ExampleImporter.
inc. Initially, our new class is empty:

class ExampleImporter extends TripalImporter {
}

There is no need to include the importer via a require_once statement in your module file. Placing it in the
/includes/TripalImporter/ directory of your module is all you need for Tripal to find it. Tripal will auto-
matically place a link for your importer at admin -> Tripal -> Data Loaders.

Note: If after creation of your importer file, Tripal does not show a link for it in the Data Loaders page, check that
you have named your class file correctly and it is in the path described above. Sometimes a clear cache is necessary
(drush cc all).

2.8.3 Static Variables

The next step in creation of your importer is setting the static member variables. Open the TripalImporter class
file that comes with Tripal and found here tripal/includes/TripalImporter.inc. Copy the public
static member variables at the top of the class into your own class. For your importer, override any of the public
static variables that need to be different from the default.

Note: For the sake of simplicity in this document, many of the default settings are not changed, and therefore, not all
are included.

Our ExampleImporter class now appears as follows:

/**
* @see TripalImporter

*/
class ExampleImporter extends TripalImporter {

/**
* The name of this loader. This name will be presented to the site

* user.

*/
public static $name = 'Example TST File Importer';

(continues on next page)

2.8. Creating Custom Data Loaders 243

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

/**
* The machine name for this loader. This name will be used to construct

* the URL for the loader.

*/
public static $machine_name = 'tripal_tst_loader';

/**
* A brief description for this loader. This description will be

* presented to the site user.

*/
public static $description = 'Loads TST files';

/**
* An array containing the extensions of allowed file types.

*/
public static $file_types = ['txt', 'tst', 'csv'];

/**
* Provides information to the user about the file upload. Typically this

* may include a description of the file types allowed.

*/
public static $upload_description = 'TST is a fictional format. Its a 2-column,

→˓CSV file. The columns should be of the form featurename, and text';

/**
* Indicates the methods that the file uploader will support.

*/
public static $methods = [
// Allow the user to upload a file to the server.
'file_upload' => TRUE,
// Allow the user to provide the path on the Tripal server for the file.
'file_local' => TRUE,
// Allow the user to provide a remote URL for the file.
'file_remote' => TRUE,

];
}

Warning: The variables that are private static should not be copied and should not be changed. Only
copy and change the public static member variables.

Now that we’ve given our importer a name and description, it will show up at /admin/tripal/loaders:

244 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

2.8.4 Form Components

By default, the TripalImporter class will provide the necessary upload widgets to allow a user to upload files for
import. The static variables we set in the previous step dictate how that uploader appears to the user. However, for
this example, our importer needs additional information from the user before data can be loaded. We need to provide
additional form widgets.

Typically, to create forms, Drupal provides form hooks: form, form_validate, form_submit. The Tri-
palImporter wraps these for us as class functions named form, formValidate and formSubmit. We can
override these class functions to provide additional widgets to the form.

Note: Typically we only need to implement the form and formValidate functions. The formSubmit does not
need to be modified.

Note: If you are not familiar with form creation in Drupal you may want to find a Drupal reference book that provides
step-by-step instructions. Additionally, you can explore the API documentation for form construction for Drupal 7.
Here, this example expects you are comfortable with form construction in Drupal.

2.8.4.1 The form function

To provide custom widgets for our importer we need to implement the form function. However, let’s review the
current form provided by the TripalImporter for us already. Using the static variables settings specified above the
form automatically provides a File Upload field set, and an Analysis selector. The File Upload area lets users choose
to upload a file, provide a Server path to a file already on the web server or a Remote path for files located via a
downloadable link on the web. The Analysis selector is important because it allows the user to specify an analysis that
describes how the data file was created.

2.8. Creating Custom Data Loaders 245

https://api.drupal.org/api/drupal/developer%21topics%21forms_api_reference.html/7.x

Tripal Documentation, Release 7.x-3.x

For our example TST file importer these upload options are sufficient. However, for our data import we want the user
provide a CV term. We want our importer to read the file, split it into feature and values, and insert properties into the
featureprop table of Chado using the the CV term as the type_id for the table.

To add a widget that allows the user to provide a CV term, we must implement the form function and include code
using Drupal’s Form API that will add the widget.

public function form($form, &$form_state) {

// For our example loader let's assume that there is a small list of
// vocabulary terms that are appropriate as properties for the genomics
// features. Therefore, we will provide an array of sequence ontology terms
// the user can select from.
$terms = [
['id' => 'SO:0000235'],
['id' => 'SO:0000238'],
['id' => 'SO:0000248']

];

// Construct the options for the select drop down.
$options = [];
// Iterate through the terms array and get the term id and name using
// appropriate Tripal API functions.
foreach ($terms as $term){
$term_object = chado_get_cvterm($term);
$id = $term_object->cvterm_id;
$options[$id] = $term_object->name;

}

// Provide the Drupal Form API array for a select box.
$form['pick_cvterm'] = [
'#title' => 'CVterm',
'#description' => 'Please pick a CVterm. The loaded TST file will associate the

→˓values with this term as a feature property.',
'#type' => 'select',
'#default_value' => '0',
'#options' => $options,
'#empty_option' => '--please select an option--'

];

// The form function must always return our form array.
return $form;

}

Our form now has a select box!

246 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

Using AJAX in forms

Note: This section is not yet available. For now, check out the Drupal AJAX guide https://api.drupal.org/api/drupal/
includes%21ajax.inc/group/ajax/7.x

2.8.4.2 The formValidate function

The formValidate function is responsible for verifying that the user supplied values from the form submission
are valid. To warn the user of inappropriate values, the Drupal API function, form_set_error() is used. It
provides an error message, highlights in red the widget containing the bad value, and prevents the form from being
submitted–allowing the user to make corrections. In our example code, we will check that the user selected a CV term
from the pick_cvterm widget.

public function formValidate($form, &$form_state) {

// Always call the TripalImporter (i.e. parent) formValidate as it provides
// some important feature needed to make the form work properly.
parent::formValidate($form, $form_state);

// Get the chosen CV term form the form state and if there is no value
// set warn the user.
$chosen_cvterm = $form_state['values']['pick_cvterm'];
if ($chosen_cvterm == 0) {
form_set_error('pick_cvterm', 'Please choose a CVterm.');

}
}

The implementation above looks for the pick_cvterm element of the $form_state and ensures the user selected
something. This is a simple example. An implementation for a more complex loader with a variety of widgets will
require more validation checks.

Note: If our importer followed best practices, it would not need a validator at all. The cvterm select box in the form
could be defined as below. Note the '#required' => True line: this would handle the validation for us. For this
tutorial, however, we implement the validation ourselves to demonstrate the function.

// Provide the Drupal Form API array for a select box.
$form['pick_cvterm'] = [

'#title' => 'CVterm',
'#description' => 'Please pick a CVterm. The loaded TST file will associate the

→˓values with this term as a feature property.', (continues on next page)

2.8. Creating Custom Data Loaders 247

https://api.drupal.org/api/drupal/includes%21ajax.inc/group/ajax/7.x
https://api.drupal.org/api/drupal/includes%21ajax.inc/group/ajax/7.x

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

'#type' => 'select',
'#default_value' => '0',
'#options' => $options,
'#empty_option' => '--please select an option--'
'#required' => True

];

When an importer form is submitted and passes all validation checks, a job is automatically added to the Tripal Job
system. The TripalImporter parent class does this for us! The Tripal Job system is meant to allow long-running
jobs to execute behind-the-scenes on a regular time schedule. As jobs are added they are executed in order. Therefore,
if a user submits a job using the importer’s form then the Tripal Job system will automatically run the job the next
time it is scheduled to run or it can be launched manually by the site administrator.

2.8.5 Importer Execution

The form and formValidate functions allow our Importer to receive an input file and additional values needed
for import of the data. To execute loading a file the TripalImporter provides several additional overridable
functions: run, preRun and postRun. When the importer is executed, the preRun function is called first. It
allows the importer to perform setup prior to full execution. The run function is where the full execution occurs and
the postRun function is used to perform “cleanup” prior to completion. For our ExampleImporter class we only
need to implement the run function. We have no need to perform any setup or cleanup outside of the typical run.

2.8.5.1 The run function

The run function is called automatically when Tripal runs the importer. For our ExampleImporter, the run
function should collect the values provided by the user, read and parse the input file and load the data into Chado.
The first step, is to retrieve the user provided values and file details. The inline comments in the code below provide
instructions for retrieving these details.

/**
* @see TripalImporter::run()

*/
public function run() {

// All values provided by the user in the Importer's form widgets are
// made available to us here by the Class' arguments member variable.
$arguments = $this->arguments['run_args'];

// The path to the uploaded file is always made available using the
// 'files' argument. The importer can support multiple files, therefore
// this is an array of files, where each has a 'file_path' key specifying
// where the file is located on the server.
$file_path = $this->arguments['files'][0]['file_path'];

// The analysis that the data being imported is associated with is always
// provided as an argument.
$analysis_id = $arguments['analysis_id'];

// Any of the widgets on our form are also available as an argument.
$cvterm_id = $arguments['pick_cvterm'];

// Now that we have our file path, analysis_id and CV term we can load

(continues on next page)

248 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

// the file. We'll do so by creating a new function in our class
// called "loadMyFile" and pass these arguments to it.
$this->loadMyFile($analysis_id, $file_path, $cvterm_id);

}

Note: We do not need to validate in the run function that all of the necessary values in the arguments array are valid.
Remember, this was done by the formValidate function when the user submitted the form. Therefore, we can trust
that all of the necessary values we need for the import are correct. That is of course provided our formValidate
function sufficiently checks the user input.

2.8.5.2 Importing the File

To keep the run function small, we will implement a new function named loadMyFile that will perform parsing
and import of the file into Chado. As seen in the code above, the loadMyFile function is called in the run function.

Initially, lets get a feel for how the importer will work. Lets just print out the values provided to our importer:

public function loadMyFile($analysis_id, $file_path, $cvterm){
var_dump(["this is running!", $analysis_id, $file_path, $cvterm]);

}

To test our importer navigate to admin > Tripal > Data Importers and click the link for our TFT importer.
Fill out the form and press submit. If there are no validation errors, we’ll receive notice that our job was submitted
and given a command to execute the job manually. For example:

drush trp-run-jobs –username=admin –root=/var/www/html

If we execute our importer we should see the following output:

Calling: tripal_run_importer(146)

Running 'Example TST File Importer' importer
NOTE: Loading of file is performed using a database transaction.
If it fails or is terminated prematurely then all insertions and
updates are rolled back and will not be found in the database

array(4) {
[0]=>
string(16) "This is running!"
[1]=>
string(3) "147"
[2]=>
string(3) "695"
[3]=>
string(72) "/Users/chet/UTK/tripal/sites/default/files/tripal/users/1/expression.tsv

→˓"
}

Done.

Remapping Chado Controlled vocabularies to Tripal Terms...

As you can see, running the job executes our run script, and we have all the variables we need to load the data. All we
need to do now is write the code!

2.8. Creating Custom Data Loaders 249

Tripal Documentation, Release 7.x-3.x

To import data into Chado we will use the Tripal API. After splitting each line of the input file into a genomic
feature and its property, we will use the chado_select_record to match the feature’s name with a record in the
feature table of Chado, and the chado_insert_property to add the property value.

public function loadMyFile($analysis_id, $file_path, $cvterm_id){

// We want to provide a progress report to the end-user so that they:
// 1) Recognize that the loader is not hung if running a large file, but is
// executing
// 2) Provides some indication for how long the file will take to load.
//
// Here we'll get the size of the file and tell the TripalImporter how
// many "items" we have to process (in this case bytes of the file).
$filesize = filesize($file_path);
$this->setTotalItems($filesize);
$this->setItemsHandled(0);

// Loop through each line of file. We use the fgets function so as not
// to load the entire file into memory but rather to iterate over each
// line separately.
$bytes_read = 0;
$in_fh = fopen($file_path, "r");
while ($line = fgets($in_fh)) {

// Calculate how many bytes we have read from the file and let the
// importer know how many have been processed so it can provide a
// progress indicator.
$bytes_read += drupal_strlen($line);
$this->setItemsHandled($bytes_read);

// Remove any trailing white-space from the line.
$line = trim($line);

// Split line on a comma into an array. The feature name appears in the
// first "column" of data and the property in the second.
$cols = explode(",", $line);
$feature_name = $cols[0];
$this_value = $cols[1];

// Our file has a header with the name 'Feature name' expected as the
// title for the first column. If we see this ignore it.
if ($feature_name == 'Feature name'){

continue;
}

// Using the name of the feature from the file, see if we can find a
// record in the feature table of Chado that matches. Note: in reality
// the feature table of Chado has a unique constraint on the uniquename,
// organism_id and type_id columns of the feature table. So, to ensure
// we find a single record ideally we should include the organism_id and
// type_id in our filter and that would require more widgets on our form!
// For simplicity, we will just search on the uniquename and hope we
// find unique features.
$match = ['uniquename' => $feature_name];
$results = chado_select_record('feature', ['feature_id'], $match);

// The chado_select_record function always returns an array of matches. If
// we found no matches then this feature doesn't exist and we'll skip

(continues on next page)

250 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

// this line of the file. But, log this issue so the user knows about it.
if (count($results) == 0) {

$this->logMessage('The feature, !feature, does not exist in the database',
['!feature' => $feature_name], TRIPAL_WARNING);

continue;
}

// If we failed to find a unique feature then we should warn the user
// but keep on going.
if (count($results) == 0) {

$this->logMessage('The feature, !feature, exists multiple times. ' .
'Cannot add a property', ['!feature' => $feature_name], TRIPAL_WARNING);

continue;
}

// If we've made it this far then we have a feature and we can do the
// insert.
$feature = $results[0];
$record = [

'table' => 'feature',
'id' => $feature->feature_id

];
$property = [

'type_id' => $cvterm_id,
'value' => $this_value,

];
$options = ['update_if_present' => TRUE];
chado_insert_property($record, $property, $options);

}
}

2.8.6 Logging and Progress

During execution of our importer it is often useful to inform the user of progress, status and issues encoun-
tered. There are several functions to assist with this. These include the logMessage, setTotalItems and
setItemsHandled functions. All three of these functions were used in the sample code above of the loadMyFile
function. Here, we provide a bit more detail.

2.8.6.1 The logMessage function

The logMessage function is meant to allow the importer to provide status messages to the user while the importer
is running. The function takes three arguments:

1) a message string.

2) an array of substitution values.

3) a message status.

The message string contains the message for the user. You will notice that no variables are included in the string but
rather tokens are used as placeholders for variables. This is a security feature provided by Drupal. Consider these lines
from the code above:

$this->logMessage('The feature, !feature, does not exist in the database',
['!feature' => $feature_name], TRIPAL_WARNING);

2.8. Creating Custom Data Loaders 251

Tripal Documentation, Release 7.x-3.x

Notice that !feature is used in the message string as a placeholder for the feature name. The mapping of !
feature to the actually feature name is provided in the array provided as the second argument. The third argument
supports several message types including TRIPAL_NOTICE, TRIPAL_WARNING and TRIPAL_ERROR. The mes-
sage status indicates a severity level for the message. By default if no message type is provided the message is of type
TRIPAL_NOTICE.

Any time the logMessage function is used the message is stored in the job log, and a site admin can review these
logs by clicking on the job in the admin > Tripal > Tripal Jobs page.

Note: You should avoid using print or print_r statements in a loader to provide messages to the end-user while
loading the file. Always use the logMessage function to ensure all messages are sent to the job’s log.

2.8.6.2 The setTotalItems and setItemsHandled functions

The TripalImporter class is capable of providing progress updates to the end-user while the importer job is
running. This is useful as it gives the end-user a sense for how long the job will take. As shown in the sample
code above for the loadMyFile function, The first step is to tell the TripalImporter how many items need
processing. An item is an arbitrary term indicating some measure of countable “units” that will be processed by our
importer.

In the code above we consider a byte as an item, and when all bytes from a file are read we are done loading that
file. Therefore the setTotalItems function is used to tell the importer how many bytes we need to process. As
we read each line, we count the number of bytes read and provide that number to the setItemsHandled function.
The TripalImporter class will automatically calculate progress and print a message to the end-user indicating the
percent complete, and some additional details such as the total amount of memory consumed during the loading.

Note: All importers are different and the “item” need not be the number of bytes in the file. However, if you want to
provide progress reports you must identify an “item” and the total number of items there are for processing.

2.8.7 Testing Importers

Unit Testing is a critically important component of any software project. You should always strive to write tests for
your software. Tripal provides unit testing using the phpunit testing framework. The Tripal Test Suite provides a
strategy for adding tests for your new Importer. It will automatically set up and bootstrap Drupal and Tripal for your
testing environment, as well as provide database transactions for your tests, and factories to quickly generate data. We
will use the Tripal Test Suite to provide unit testing for our ExampleImporter.

Note: Before continuing, please install and configure Tripal Test Suite.

For instructions on how to install, configure, and run Tripal Test Suite, please see the Tripal Test Suite documentation.

2.8.7.1 Example file

When developing tests, consider including a small example file as this is good practice both to ensure that your loader
works as intended, and for new developers to easily see the expected file format. For our ExampleImporter, we’ll
include the following sample file and store it in this directory of our module: tests/data/example.txt.

252 Chapter 2. Developer’s Guide

https://tripaltestsuite.readthedocs.io/en/latest/

Tripal Documentation, Release 7.x-3.x

Table 1: Example input file
Feature name CVterm value
test_gene_1 blue
test_gene_2 red

2.8.7.2 Loading the Importer

Testing your loader requires a few setup steps. First, TripalImporters are not explicitly loaded in your module (note
that we never use include_once() or require_once in the .module file). Normally Tripal finds the importer
automatically, but for unit testing we must include it to our test class explicitly. Second, we must initialize an instance
of our importer class. Afterwards we can perform any tests to ensure our loader executed properly. The following
function provides an example for setup of the loader for testing:

private function run_loader(){

// Load our importer into scope.
module_load_include('inc', 'tripal_example_importer', 'includes/TripalImporter/

→˓ExampleImporter');

// Create an array of arguments we'll use for testing our importer.
$run_args = [
'analysis_id' => $some_analysis_id,
'cvterm' => $some_cvterm_id

];
$file = ['file_local' => __DIR__ . '/../data/exampleFile.txt'];

// Create a new instance of our importer.
$importer = new \ExampleImporter();
$importer->create($run_args, $file);

// Before we run our loader we must let the TripalImporter prepare the
// files for us.
$importer->prepareFiles();
$importer->run();

}

Note: We highly recommend you make use of database transactions in your tests, especially when running loaders.
Simply add use DBTransaction; at the start of your test class. Please see the Tripal Test Suite documentation
for more information.

2.9 Creating Custom Web Services

2.9.1 Introduction

New in Tripal v3 are RESTful web services. These web-services are designed to allow end-users to access data
programmatically using any programming language of their choice. Web services in Tripal v3 are provided by the
tripal_ws module. By default the module provides the “content” service. This service provides access via a RESTful
interface to all of the content published on a Tripal site. It is meant to respond immediately as the site admin makes
changes to published data and is expected to always provide access to the same data displayed on the site (nothing
more and nothing less).

2.9. Creating Custom Web Services 253

https://tripaltestsuite.readthedocs.io/en/latest/
https://tripaltestsuite.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Representational_state_transfer

Tripal Documentation, Release 7.x-3.x

Tripal v3 has been redesigned from Tripal v2 to be fully organized around controlled vocabularies. All data made
available via Tripal is expected to be described by the terms of a controlled vocabulary or ontology. For example, all
content types in Tripal are assigned a controlled vocabulary term that describes what the content is. Additionally, each
field of data attached to a content type also is described using a controlled vocabulary term. If a field provides more
than just a single data value (i.e. it provides a list or nested structured array of data of key/value pairs) then each of
the keys for those pairs must also be a controlled vocabulary term. This requirement allows Tripal to fully describe
the data it houses to any other Tripal site and any other script or service that can read the web services. As long as
the client application understands the vocabulary term it will understand the meaning of the data. Using controlled
vocabulary terms to describe all data allows a Tripal site to participate in the Semantic Web.

Finally, the Tripal RESTful services are meant to be discoverable. In some cases, when a web services is designed,
the only way to understand the structure of it and the operations that it provides are for a programmer to read online
documentation for the service before she can write the client application. However, to better support automatic data
discovery without human intervention by a client the Tripal web services have been designed to be discoverable. To
this end, Tripal uses the Hydra Core Vocabulary specification. It fully describes all of the services, their operations,
and the resulting value. A client application that understands the Hydra language can therefore learn to use the web
service without human intervention. However, in practice, its a good idea to continue to provide online documentation
for humans. And this User’s Guide provides those instructions for the default Tripal content service.

This documentation provides instructions to construct your own custom web services and making that service available
through Tripal’s existing web service infrastructure. This will enable your web service to be discoverable and to
provide a consistent experience to end-users. Before proceeding with the following instructions, please review the
Structure of a Web Service Response section on the User’s Guide Web Services page.

2.9.2 Getting Started

Before creation of your new web services you must first consider the following in your design:

1. What functionality will your service provide. This will dictate the URL paths that you will need and what
operations (Create, Read, Update, Delete) your service will support.

2. What controlled vocabularies do you need to use to describe the data that your service may provide.

3. What human-readable label can you give to your service.

4. What one-word describes the type of service you are creating.

5. What human-readable description should you provide to users of your service.

When you are ready to begin construction of your web service, you must first create a custom Drupal module. The
assumption is that you already know how to create new Drupal modules, or you have access to an existing one into
which you can add your new web services. Prepare your custom module by creating the following directory structure:

[module_name]/includes/TripalWebService

Where [module_name] is the name of your custom module. It is inside of this directory that you will place the code
for your new web services. Tripal is designed to recognize this directory, discover the web services described inside
of it and to automatically make them available! You need only program the service and Tripal does the rest.

Note: When selecting a version number it is best practice to start with 0.1. The first number represents the “major”
number and the second number is the “minor” number. When minor bug fixes or changes to the service occur the
minor number should be incremented. When major changes occur that affect the structure of the web service or it’s
operations then the major number should be incremented. The service can be named whatever you like. This class file
should be named according to this schema with a .inc extension.

For this tutorial, suppose we wanted to create a web service that allowed someone to interact with the Tripal Job queue.
We could name our new class the TripalJobService_v0.1 class and we would create this class in the file:

254 Chapter 2. Developer’s Guide

https://en.wikipedia.org/wiki/Semantic_Web
https://www.hydra-cg.com/spec/latest/core/

Tripal Documentation, Release 7.x-3.x

[module_name]/includes/TripalWebService/TripalJobService_v0_1.inc

Within this file we will implement our class with the following structure:

class TripalJobService_v0_1 extends TripalWebService {

/**
* The human-readable label for this web service.

*/
public static $label = 'Jobs';

/**
* A bit of text to describe what this service provides.

*/
public static $description = 'Provides interaction with the Tripal Job Queue';

/**
* A machine-readable type for this service. This name must be unique

* among all Tripal web services and is used to form the URL to access

* this service.

*/
public static $type = 'jobs';

/**
* Implements the constructor

*/
public function __construct($base_path) {
parent::__construct($base_path);

}
}

This is all we need for Tripal to recognize our new service! Notice that the class implementation extends the Tripal-
WebSerivce class and it sets a few static variables that defines the label, description and name for this service. Finally,
this class defines the constructor which simply calls the parent class constructor. Be sure to always call the parent
constructor when you implement your own service. We can now use the Hydra console to see our service. Note, that
the hydra console must be able to have access to your site. For this tutorial, the Tripal site is temporarily hosted on
the local machine, and hence Hydra has been installed locally. To see if your new service shows up, enter the URL for
your site into the Hydra console and you should see it appear:

2.9. Creating Custom Web Services 255

http://www.markus-lanthaler.com/hydra/console/

Tripal Documentation, Release 7.x-3.x

Notice in the above screen shot that our jobs service is now present in the Response section, and in the Documentation
section! The Response section shows the JSON array returned by Tripal and the Documentation section displays the
information about our service.

2.9.3 Documenting the Services

Our service appears in the Hydra console but if we try to use Hydra to perform a GET operation on our Jobs service
there will be no interesting response and no documentation. Try this by clicking on the link in the Response section
for our Jobs service, and selecting the GET operation.

You will see that our service provides nothing:

256 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

Before we create our service we should have planned the design of our service. Suppose for now we just wanted to
provide read-only access to job information. Our design for the web service is quite simple and consists of the these
resources (URLs and operations):

TABLE!

Before we begin implementation of our web service we must first document these resources. To do this we must add
a new function to our TripalJobService_v0_1 class named getDocumentation. The following code shows this initial
implementation of that function in our class:

/**
* @see TripalWebService::getDocumentation()

*/
public function getDocumentation() {

return parent::getDocumentation();
}

Notice currently all this function does is call the parent getDocumentation function. Now, the first thing we need to
document is our web service classes. A web service class (not to be confused with the PHP class) simply refers to
a resource. A resource is any distinct URL within web services. So, according to our design above we have two
resources and hence two classes: a jobs collection resource and a job resource. Tripal must describe all of the classes
(i.e. resources) using the Hydra method. This makes the web service discoverable. For example, with the content
web service, Tripal provides a resource for each content type. The Gene content type that Tripal provides is described
using the Hydra method in a JSON array with the following:

{
"@id": "http://www.sequenceontology.org/browser/current_svn/term/SO:0000704",
"@type": "hydra:Class",
"hydra:title": "Gene",
"hydra:description": "A region (or regions) that includes all of the sequence

→˓elements necessary to encode a functional transcript. A gene may include regulatory
→˓regions, transcribed regions and\/or other functional sequence regions. [SO:immuno_
→˓workshop]",
"subClassOf": "hydra:Resource",
"supportedOperation": [
{

"@id": "_:gene_retrieve",
"@type": "hydra:Operation",
"method": "GET",
"label": "Retrieves the Gene resource.",

(continues on next page)

2.9. Creating Custom Web Services 257

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

"description": null,
"statusCodes": [],
"expects": null,
"returns": "http://www.sequenceontology.org/browser/current_svn/term/SO:0000704"

}
]

}

In the above array, notice the @id is URL that represents a unique identifier for the class. The @type will always
be ‘hydra:Class’ because we are documenting a resource. Then there is information about the class defined using the
‘hydra:title’ and ‘hydra:description’. The ‘subclassOf’ is always set to ‘hydra:Resource’. Next is the list of supported
operations for this resource. Remember, in our design we only want to support the GET operation for our Jobs service,
so just like in the example above, the method we will support is GET. The key/value pairs for the GET method are
described using Hydra terms.

For our services we need to provide the information to Tripal so that it can generate these Hydra JSON arrays that
document our service. Tripal provides some easy API functions to help with this. The first is the addDoc member
function. This function will take as input the class details, operations and properties necessary to generate the docu-
mentation for our class. First, lets use this function to document our Jobs Collection resource. Below is sample code
that will do this for us.

public function getDocumentation() {
$term = tripal_get_term_details('local', 'computational_jobs');
$details = array(

'id' => $term['url'],
'title' => $term['name'],
'description' => $term['definition'],

);
$operations = array(

'GET' => array(
'label' => 'Computational Jobs',
'description' => 'Retrieves the list of computational jobs that have been

→˓submitted on this site.',
'returns' => $term['url'],
'type' => '_:computational_jobs_retrieve',

),
);
$properties = array(
);
$this->addDocClass($details, $operations, $properties);
return parent::getDocumentation();

In the code above we add the documentation for our Job Collection class. There are three different arrays, one for the
class details, one for the operations that the class supports and the third for properties. For now, the properties array is
left empty. We’ll come back to that later. All classes must use a controlled vocabulary term. Notice that the term used
for this class is a term local to the database named ‘computational_jobs’. Normally when creating a class we would try
to use a term from a published controlled vocabulary. A large number of these vocabularies can be searched using the
EBI Ontology Lookup Service. Unfortunately, an appropriate term could not be found in a published vocabulary, so
we had to create a local term. We can use Tripal’s API functions to easily add new terms. The following code should
be placed in the install() function of your module to ensure the term is available:

$term = tripal_insert_cvterm(array(
'id' => 'local:computational_job',
'name' => 'Computational Job',
'cv_name' => 'local',

(continues on next page)

258 Chapter 2. Developer’s Guide

hydra:Class
hydra:title
hydra:description
hydra:Resource
https://www.ebi.ac.uk/ols/index
https://www.ebi.ac.uk/ols/index

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

'definition' => 'A computational job that executes a specific task.',
));
$term = tripal_insert_cvterm(array(

'id' => 'local:computational_jobs',
'name' => 'Computational Jobs',
'cv_name' => 'local',
'definition' => 'A set of computational jobs where each job executes a

→˓specific task.',
));

You’ll notice in the code above that the @id of the Class is the URL of the term. Using the tripal_get_term_details
function we can get the URL for the term. The URL serves as the unique identifier for this term. We simply set the
title and description for the class using the term details. For the operation, we can specify any of the HTTP protocols
(e.g. GET, PUT, PUSH, DELETE and PATCH). Here we are currently only supporting read-only operations so we
only need to provide a ‘GET’ operation. Our jobs collection resource is now documented!

2.9.4 Implementing a Collection Resource

Now that our job collection resource is documented we can implement the resource using the handleRequest function.
We currently only support two paths for our web services as indicated in our design table above. Those include
the default path where our job collection resource is found and an additional path with the job ID appended where
individual job resources are found. First, we will implement the Job Collections resource:

/**
* @see TripalWebService::handleRequest()

*/
public function handleRequest() {

// Get the content type.
$job_id = (count($this->path) > 0) ? $this->path[0] : '';

// If we have a content type then list all of the entities that belong
// to it.
if (!$job_id) {

$this->doJobsList();
}

}

in the code above need to determine if the resource is a job collection or a job resource. To do that we can check to see
if a job_id was provided. The TripalWebService class provides as a member element the full URL path broken into
an array of elements. Because our job_id would always be in the first element of the path (after our base path for the
service) we can use $this->path[0] to look for a job_id. If one is not provided then we can execute a function called
doJobsList and the code for that is as follows:

/**
* Generates the job collection resource.

*/

private function doJobsList() {
// If the user has specified a limit or page number then use those to
// get the specific jobs.
$limit = isset($this->params['limit']) ? $this->params['limit'] : '25';
$page = isset($this->params['page']) ? $this->params['page'] : 0;

(continues on next page)

2.9. Creating Custom Web Services 259

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

// Get the list of jobs for the given page, and the total number.
$offset = $page * $limit;
$jobs = tripal_get_jobs($offset, $limit);
$num_records = tripal_get_jobs_count();

// Set the current resource to be a new TripalWebServiceCollection resource,
// and pass in the current service path, and set the pager.
$service_path = $this->getServicePath();
$this->resource = new TripalWebServiceCollection($service_path, $this->params);
$this->resource->setType('local:computational_jobs');
$this->resource->initPager($num_records, $limit, $page);

// Now add the jobs as members
foreach ($jobs as $job) {

$member = new TripalWebServiceResource($service_path);
$member->setID($job->job_id);
$member->setType('local:computational_job');
$member->addProperty('schema:ItemPage', url('admin/tripal/tripal_jobs/view/' .

→˓ $job->job_id, array('absolute' => TRUE)));
$this->resource->addMember($member);

}
}

The first few lines of code above are as follows:

$limit = isset($this->params['limit']) ? $this->params['limit'] : '25';
$page = isset($this->params['page']) ? $this->params['page'] : 0;

Remember, that we wanted to allow for paging of our job collection. We could have hundreds or thousands of jobs over
time and we do not want to slow the page load by loading all of those jobs. Therefore the page and limit parameters
that can be added to the URL are available via the params member as a set of key/value pairs. Next, using Tripal API
function calls, we get the list of jobs that the user has requested to see (or the first page by default):

$offset = $page * $limit;
$jobs = tripal_get_jobs($offset, $limit);
$num_records = tripal_get_jobs_count();

Now that we have our list of jobs to use in the collection we next need to build the resource. We do this by setting the
resource member of our TripalJobService_v0_1 class. Tripal provides an easy way for constructing a collection via
a class named TripalWebServiceCollection. This class provides the necessary functions to easily create a collection
resource that in the end will generate the appropriate JSON for us. To create a collection we first instantiate a new
instance of the TripalWebServiceCollection class and pass it the URL path that it corresponds to (in this case our base
service path for the service). We assign this new object to the resource member of our class.

$service_path = $this->getServicePath();
$this->resource = new TripalWebServiceCollection($service_path, $this->params);

Next we need to indicate what type of collection this is. Remember the controlled vocabulary terms we created
previously? We need to use those again to set the type. Our term for a job collection is: local:computational_jobs. So,
we need to use this to set the type:

$this->resource->setType('local:computational_jobs');

Now, because we have instantiated a TripalWebServiceCollection object it can handle creation of the pager for us. We
just need to tell it how many total records there are, the page and number of records per page (i.e. limit):

260 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

$this->resource->initPager($num_records, $limit, $page);

Lastly, we need to add our “members” of the collection. These are the jobs from our query. The following for loop
iterates through all of our jobs and creates new member objects that are added to our collection:

foreach ($jobs as $job) {
$member = new TripalWebServiceResource($service_path);
$member->setID($job->job_id);
$member->setType('local:computational_job');
$member->addProperty('schema:name', $job->job_name);
$member->addProperty('schema:ItemPage', url('admin/tripal/tripal_jobs/view/' .

→˓$job->job_id, array('absolute' => TRUE)));
$this->resource->addMember($member);

}

Notice in the code above that each job is an instance of the class called TripalWebServiceResource. We use this class
because each element of the collection is a reference to a resource and we reference the ID and the type. In the code
above we create the new member resource, we set it’s type to be the vocabulary term ‘local:computational_job’ and
eventually, use the addMember function of our TripalWebServiceCollection to add it to the collection.

Also in the code above is a new function named addProperty. We want to add some additional information about the
job to help the end-user understand what each job is and how to get to it. Here we add two properties, one that is the
job name and another that is the page URL for the job on our Tripal site. With these properties the client can quickly
see the title and can go see the job on the Tripal site by following the given URL. Note, a resource always has two
identifying pieces of information: the ID and the Type. So, everything else is added as a property of the resource.
Also notice that the first argument when using the addProperty function is a controlled vocabulary term. Here we’ve
used the terms schema:name and schema:ItemPage. These terms are from the Schema.org vocabulary and the define
what these properties are: a name and an item’s page.

Now that we have what looks like enough code to handle the job collection resource, we can return to Hydra to test if
our new resource is working. The screenshot below shows the results:

2.9. Creating Custom Web Services 261

Tripal Documentation, Release 7.x-3.x

It’s clear that our resource is working! However, there are some issues. The URL for the ItemPage does not show as
clickable, and we’re missing descriptions of the properties in the Documentation column on the right. We’ll fix that
issue a bit later. For now, this looks good.

2.9.5 Simplifying the Property Keys

Note: The rest of the guide is under construction

2.9.6 Implementing a Resource

2.9.7 Documenting Properties

2.9.8 More on Parameters

2.9.9 Implementing Other Operations

2.9.10 Controlling Access to Resources

Debugging and Troubleshooting

262 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

2.10 Continuous Integration

Continuous integration refers to an active code base where multiple developers are integrating their changes continu-
ously into a single cohesive project. One of the biggest keys to making continuous integration work is testing before
integrating! Tripal Test Suite makes developing tests using PHPUnit much easier and this tutorial will show you how
to ensure those tests are run every time you push to GitHub!

2.10.1 Using GitHub Workflows

First, what is a GitHub Workflow? From GitHub, “a workflow is a configurable automated process made up of one
or more jobs”. I like to think of it as configuring a bioinformatics pipeline. For the purposes of this tutorial, we are
telling GitHub how to execute our PHPUnit tests automatically.

You can learn more about GitHub Action Workflows from GitHub directly. We will cover it breifly here specifically
for Tripal PHPUnit testing but the official tutorial is still recommended.

2.10.1.1 Telling GitHub about your workflow

This is as simple as creating your workflow file in the right place. You want to create a new file named phpunit.yml at
.github/workflows/ in your repository. GitHub will automatically know this file describes a workflow and will execute
the workflow based on the configuration you provide.

2.10.1.2 Configuring a workflow to run PHPUnit tests

All configuration will be done in the file created in step 1.

First we provide the name, when we want to run the workflow (i.e. on push and PRs) and the basic structure of a
workflow:

name: PHPUnit

Controls when the workflow will run.
Run this workflow every time a new commit is pushed to your repository
on: [push, pull_request]

jobs:
This key is the name of the job.
run-tests:
The type of system that the job will run on.
runs-on: ubuntu-latest

We want our tests to be run five times, for each of PHP 7.1, 7.2, 8.0, 8.1, and 8.2. This is done by specifing a matrix
build which can be done as follows:

jobs:
This key is the name of the job.
run-tests:
The type of system that the job will run on.
runs-on: ubuntu-latest

Matrix Build for this job.
strategy:

matrix:
(continues on next page)

2.10. Continuous Integration 263

https://docs.github.com/en/free-pro-team@latest/actions/learn-github-actions/introduction-to-github-actions

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

php-versions: ['7.1', '7.2', '8.0', '8.1', '8.2']

Name the matrix build so we can tell them apart.
name: PHPUnit Testing (PHP ${{ matrix.php-versions }})

We also want to tell GitHub to setup a PostgreSQL server for us. This is done using services:

jobs:
This key is the name of the job.
run-tests:
The type of system that the job will run on.
runs-on: ubuntu-latest

Service containers to run with `run-tests`
services:

Label used to access the service container
postgres:

Docker Hub image
image: postgres
env:
POSTGRES_USER: tripaladmin
POSTGRES_PASSWORD: somesupersecurepassword
POSTGRES_DB: testdb

Set health checks to wait until postgres has started
options: >-
--health-cmd pg_isready
--health-interval 10s
--health-timeout 5s
--health-retries 5

ports:
Maps tcp port 5432 on service container to the host
- 5432:5432

Finally we can actually tell GitHub what steps we want to run using this beautiful container we have setup! We want
to:

jobs:
This key is the name of the job.
run-tests:
The type of system that the job will run on.
runs-on: ubuntu-latest

steps:
1) Checkout the repository and setup workspace.
- uses: actions/checkout@v2

2) Setup PHP according to the version passed in.
- name: Setup PHP

uses: shivammathur/setup-php@v2
with:
php-version: ${{ matrix.php-versions }}
extensions: mbstring, intl, php-pgsql, php-gd, php-xml
ini-values: memory_limit=2G
coverage: xdebug
tools: composer, phpunit

(continues on next page)

264 Chapter 2. Developer’s Guide

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

3) Install Drush/Drupal/Tripal
- name: Setup Drush, Drupal 7.x, Tripal 3.x

id: tripalsetup
uses: tripal/setup-tripal-action@7.x-3.x-1.0
with:
postgres_user: tripaladmin
postgres_pass: somesupersecurepassword
postgres_db: testdb

4) Install Tripal Extension Module.
- name: Install Tripal Extension Module

id: installextension
env:

DRUSH: ${{ steps.tripalsetup.outputs.drush_path }}
DRUPAL_ROOT: ${{ steps.tripalsetup.outputs.drupal_root }}

run: |
mkdir -p $DRUPAL_ROOT/sites/all/modules/example_module
cp -R * $DRUPAL_ROOT/sites/all/modules/example_module
cd $DRUPAL_ROOT
$DRUSH en -y example_module

5) Runs the PHPUnit tests.
https://github.com/mheap/phpunit-github-actions-printer is used
to report PHPUnit fails in a meaningful way to github in PRs.
- name: PHPUnit Tests

env:
DRUSH: ${{ steps.tripalsetup.outputs.drush_path }}
DRUPAL_ROOT: ${{ steps.tripalsetup.outputs.drupal_root }}

run: |
cd $DRUPAL_ROOT/sites/all/modules/example_module
composer require --dev mheap/phpunit-github-actions-printer --quiet
composer update --quiet
./vendor/bin/phpunit --printer mheap\\GithubActionsReporter\\Printer

In step 4 above, I have provided an example of what installing your extension module might look like. The run section
will need to be modified according to your module and should include downloading and installing any dependencies,
applying any patches and installing your module. If your tests require configuration then that should also be included
here.

In step 5 we run our PHPUnit tests! All you need to change here is the directory name for your module. The
mheap\GithubActionsReporter\Printer will ensure any errors reported by PHPUnit are shown on your PR and Action
summary.

All steps before step 4 should be generic for any extension module! You can find the full configuration file on the
README of the SetupTripalAction.

2.10.2 Checking your Action

Everytime you push commits to your repository and when you create a pull request, your action will be run. Thus to
test your action, commit your phpunit.yml file created above to trigger the GitHub action. Then click on “Actions” at
the top of your repository to see it in progress.

If you created a pull request, you will see your workflow action in the checks section at the bottom of your pull request.
From here you can click on Details to see the full running of the job.

2.10. Continuous Integration 265

https://github.com/tripal/setup-tripal-action#usage

Tripal Documentation, Release 7.x-3.x

2.10.3 Adding the Badge to your README

Click on Actions at the top of your repository, then click on one of the PHPUnit jobs which have already been
submitted. This brings you to the job summary page where you will see a button with three dots in the top right corner.
Click on this and then “Create status badge” to get the markdown to add to your README.

2.11 Using ReadTheDocs

Note: For Tripal’s own ReadTheDocs guidelines: Contributing to the Documentation.

2.11.1 What is ReadTheDocs?

Documentation is important. It tells users how to use our product, and developers how to read our code. We recom-
mend hosting documentation for your custom module somewhere easily accessible, like ReadTheDocs.

ReadTheDocs (RTD) uses the Sphinx framework to build a website in a Continuous Integration setup. Your RTD-
compatible documentation is added directly to your module and when code changes are pushed to GitHub, the docu-
mentation website as defined by sphinx is built, and the “live” documentation website is updated.

Benefits to housing documentation inside of your module code are:

• Code changes can include documentation updates in the same pull request.

• Changes to the documentation is subject to review, just like code changes.

• Documentation changes are under version control.

2.11.2 How do I add ReadTheDocs to my project?

Below is a quick overview of steps for integrating your module’s documentation with RTD:

• Set up your ReadTheDocs account and import your project.

• Install Sphinx.

266 Chapter 2. Developer’s Guide

https://readthedocs.org/
http://www.sphinx-doc.org/en/master/

Tripal Documentation, Release 7.x-3.x

• Create a docs folder at the root of your project and navigate into it.

• Run the quickstart command: sphinx-quickstart. - This creates necessary site configuration files (conf.
py) as well as the make script to build your site.

• Write your documentation (we’re using reStructuredText (RST) format): - Create an index.rst as the home
page. - Link other RST documents in your index.rst.

• Once the guide is on your master branch on GitHub, ReadTheDocs will handle the rest!

For a detailed walkthrough, please see the official ReadTheDocs getting started guide.

For RTD integration we recommend using reStructuredText (RST) to write your documentation. It might seem a little
more complicated than markdown (and it is), but it’s also more powerful. The choice is yours for which format to use.

ReadTheDocs also provides versioning tools, allowing you to post releases of the documentation so users can go back
and find older documentation with almost no effort on your part.

2.11.3 What should my documentation include?

We suggest that your module include the following sections:

• Overview

• Installation and Setup Guide

• User’s Manual

The Overview section should describe what features your module offers.

The Installation and setup section should guide a site administrator through installing and setting up your module.
Any site-wide settings that need to be configured, environmental variables set, or anything else not handled by the
automated Drupal install should be covered.

The User’s guide should walk through the day-to-day usage of your module. This may include using custom importers,
dashboards, or simply summaries of the new content this module provides.

2.12 Video Tutorials

Note: The following videos are provided by members of the community. While we don’t ensure the videos are up to
date, we would appreciate being contacted through the issue queue if you find a broken link. Also, if you have your
own video and would like to contribute, we would love to hear from you!

2.12.1 Testing

The Tripal Test Suite module is used by the core Tripal module, and many custom modules, to easily set up PHPUnit
and Travis CI.

• Creating and running Test Suite Tests

• Test Suite Factories and DB Transactions

• Test Suite Seeding and Publishing Data

• Test Driven Development live demo

2.12. Video Tutorials 267

https://docs.readthedocs.io/en/latest/getting_started.html
https://github.com/tripal/tripal/issues/new/choose
https://github.com/statonlab/TripalTestSuite
https://www.youtube.com/watch?v=hxuiDzRqs9U
https://www.youtube.com/watch?v=PTJ1Dv8QAag
https://www.youtube.com/watch?v=HE2B7YnWYfQ
https://www.youtube.com/watch?v=zmYZ_HV3b9s

Tripal Documentation, Release 7.x-3.x

2.12.2 Developer Tools

• Tripal 3 - Setting Up A Website From Scratch With TripalDock

• Tripal 3 - TripalDock Commands And Site Structure

2.12.3 Other

• Loading Biomaterials with Tripal Analysis Expression

268 Chapter 2. Developer’s Guide

https://www.youtube.com/watch?v=5SOfQLypvdE
https://www.youtube.com/watch?v=g_fmONUgG3s
https://www.youtube.com/watch?v=7YkPp2443qA

CHAPTER 3

Extension Modules

The below modules are Tripal 3 compatible and grouped roughly by category:

3.1 Administrative

The following modules provide support to Tripal site administrators.

3.1.1 Private BioData

Make individual pages private while others of the same Tripal Content Type remain public! This module provides an
additional permission, [Content type]: View Private Content for each Tripal Content Type and a TripalField to indicate
which exact pages should be private.

Documentation Repository

3.1.2 Tripal Alchemist

Tripal Alchemist allows you to transform entities from one type to another. Define multiple bundles with the same
base table and easily convert existing entities to the new type.

Documentation Repository

3.1.3 Tripal Curator

Tripal Curator is a Toolbox for curating Chado Properties. Split properties into multiple child properties, and mass
reassign property CVterms.

Documentation Repository

269

https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://github.com/tripal/private_biodata/blob/master/README.md
https://github.com/tripal/private_biodata
https://github.com/statonlab/tripal_alchemist/blob/master/README.md
https://github.com/statonlab/tripal_alchemist
https://github.com/statonlab/tripal_curator/blob/master/README.md
https://github.com/statonlab/tripal_curator

Tripal Documentation, Release 7.x-3.x

3.1.4 Tripal HeadQuarters

Tripal HeadQuarters (HQ) provides an administrative layer for Tripal, giving users limited access to content creation
forms which must be approved by an admin before they are inserted into the database. Admins can use Chado-specific
permissions to define organism or project-specific administrative rights.

Documentation Repository

3.2 Analysis/Annotation

The following modules provide support for loading annotation or analysis’ into Chado and displaying them on Tripal
pages.

3.2.1 Tripal Analysis Expression

A module for loading, annotating, and visualizing NCBI Biomaterials and expression data.

Documentation Repository

3.2.2 Tripal Analysis Blast

This module extends the Tripal Analysis Module and provides a method for loading XML results from the NCBI blast
program. Blast results appear on each feature page.

Documentation Repository

3.2.3 Tripal Analysis KEGG

This module provides a method for loading of KEGG ortholog assignments derived from the KEGG Automated
Annotation Server (KAAS). KEGG assignments appear on each feature page, and a full KEGG report is available for
browsing results once uploaded.

Repository

3.2.4 Tripal Analysis Interpro

This module provides a method for loading XML results from the InterProScan program. The module can load Inter-
ProScan XML v4 or InterProScan XML v5 generated from the command-line or web-based versions of InterProScan.
Additionally, GO terms mapped by InterProScan can optionally be assigned to features.

Documentation Repository

3.2.5 Tripal CV-Xray

Tripal CV-Xray maps content annotations onto controlled vocabulary trees. The end result is a browseable CV field
that lets users explore ontologies and find associated content.

Documentation Repository

270 Chapter 3. Extension Modules

https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://tripal-hq.readthedocs.io/en/latest/index.html
https://github.com/statonlab/tripal_hq
https://github.com/tripal/tripal_analysis_expression/blob/master/README.md
https://github.com/tripal/tripal_analysis_expression
https://tripal.readthedocs.io/en/latest/user_guide/example_genomics/func_annots/blast.html
https://github.com/tripal/tripal_analysis_blast
https://github.com/tripal/tripal_analysis_kegg
https://tripal.readthedocs.io/en/latest/user_guide/example_genomics/func_annots/interpro.html
https://github.com/tripal/tripal_analysis_interpro
https://github.com/statonlab/tripal_cv_xray/blob/master/README.md
https://github.com/statonlab/tripal_cv_xray

Tripal Documentation, Release 7.x-3.x

3.2.6 Tripal OrthoQuery

The OrthoQuery module identifies orthologous genes via a Tripal database, standardizes the data for comparative
analysis, performs the OrthoFinder analysis through the Tripal Galaxy API, sends the data to the user’s database
profile, and provides interactive visualizations. Visualization features focus on facilitating the interrogation of large
gene families, examining relationships among families, and allowing direct query of the stored orthogroups and their
function. Orthoquery is currently in development.

Repository

3.3 Breeding

The following modules provide support for managing breeding data.

3.3.1 BIMS

A module for an online breeding management system which allows breeders to store, manage, archive and analyze
their public or private breeding program data.

Documentation Repository

3.4 Data Loading/Collection

The following modules provide interfaces for collection and/or loading of biological data.

3.4.1 Genotype Loader

A Drush-based loader for VCF files that follows the genotype storage rules outline by ND genotypes. It has been
optimized to handle very large files and supports customization of ontology terms used.

Documentation Repository

3.4.2 Mainlab Chado Loader

MCL (Mainlab Chado Loader) is a module that enables users to upload their biological data to Chado database schema.
Users are required to transfer their biological data into various types of data template files. MCL, then, uploads these
data template files into a Chado schema.

Documentation Repository

3.4.3 Raw Phenotypes

This module was designed to aid in collection and further analysis of raw phenotypic data. It supports Excel drag-
n-drop uploads with immediate validation and researcher feedback. Additionally, it provides summary charts and
download functionality.

Documentation Repository

3.3. Breeding 271

https://gitlab.com/TreeGenes/orthoquery
https://gitlab.com/mainlabwsu/bims/blob/master/README.md
https://gitlab.com/mainlabwsu/bims
https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://genotypes-loader.readthedocs.io/en/latest/
https://github.com/UofS-Pulse-Binfo/genotypes_loader
https://gitlab.com/mainlabwsu/mcl/blob/master/README.md
https://gitlab.com/mainlabwsu/mcl
https://github.com/UofS-Pulse-Binfo/rawphenotypes/blob/master/README.md
https://github.com/UofS-Pulse-Binfo/rawphenotypes

Tripal Documentation, Release 7.x-3.x

3.4.4 Tripal BibTeX

A BibTEX importer for Tripal Publications. Currently this module only provides a Drush function
(tripal-import-bibtex-pubs; trpimport-bibtex) for import of BibTEX files.

Documentation Repository

3.4.5 Tripal Plant PopGen Submission

The Tripal Plant PopGen Submit (TPPS) Module supports a flexible submission interface for genotype, phenotype,
environmental, and metadata for population, association, or landscape genetics studies. The portal walks the user
through specific questions and collects georeferenced coordinates on plant accessions and also supports ontology
standards, including the Minimal Information About a Plant Phenotyping Experiment (MIAPPE) (http://www.miappe.
org/) and standard genotyping file formats, such as VCF.

Documentation Repository

3.4.6 Migrate Chado

This module is a collection of destination plugins to import biological data to a Chado database using Drupal Migrate.
The Migrate module provides a flexible framework for migrating content into Drupal from other sources (e.g., when
converting a web site to Drupal). Content is imported and rolled back using a bundled web interface (Migrate UI
module) or included Drush commands (strongly recommended).

Documentation Repository

3.5 Developer Tools

The following modules provide support to both core and extension Tripal developers.

3.5.1 TripalDock

TripalDock is a command line tool that helps with creating and running Tripal sites using Docker. This tool is designed
for developers and is not suitable for production.

Documentation Repository

3.5.2 Tripal Download API

This module provides an API for downloading Tripal/Chado data. Since download functionality is often sought after
for Tripal sites and Views Data Export is not currently meeting our needs, this module aims to provide an API to aid
module and site developers in making efficient, user friendly downloads available.

Documentation Repository

272 Chapter 3. Extension Modules

https://github.com/UofS-Pulse-Binfo/tripal_bibtex/blob/7.x-3.x/README.md
https://github.com/UofS-Pulse-Binfo/tripal_bibtex
https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Silver
http://www.miappe.org/
http://www.miappe.org/
https://tpps.readthedocs.io/en/latest/
https://gitlab.com/TreeGenes/TGDR
https://www.drupal.org/project/migrate
https://www.drupal.org/docs/7/modules/migrate-chado
https://www.drupal.org/project/migrate_chado
https://github.com/statonlab/tripaldock/blob/master/README.md
https://github.com/statonlab/tripaldock
https://github.com/tripal/trpdownload_api/blob/7.x-1.x/README.md
https://github.com/tripal/trpdownload_api

Tripal Documentation, Release 7.x-3.x

3.5.3 Tripal D3.js API

Provides d3.js integration for Tripal. It provides an API for developing consistent biological diagrams with a common
configuration, as well as, providing some common diagrams such as pie, bar, column and pedigree diagrams.

Documentation Repository

3.5.4 Tripal Fields Generator

This is a CLI tool to help automate the generation of Tripal fields.

Documentation Repository

3.5.5 Tripal Rapid Installer

Provides rapid installation of a Tripal site using Drush.

Documentation Repository

3.5.6 Tripal Test Suite

Tripal Test Suite is a composer package that handles common test practices such as bootstrapping Drupal before
running the tests, creating test file, creating and managing database seeders (files that seed the database with data for
use in testing) and much more.

Documentation Repository

3.6 Third-party Integration

The following modules provide integration with external third-party tools. For example, they may allow you to easily
embed the tool in Drupal/Tripal pages and/or expose data from the tool on your Tripal site.

3.6.1 BrAPI

This module provides a Breeding API end point on your Tripal site as well as a user query interface and an auto-query
system to integrate external BrAPI end point data into your site dynamically. An administrative interface allows you
to adjust the module settings according to the way you use Chado. A couple of hooks are also provided for module
developers in order to allow customization/extension of calls.

Documentation Repository

3.6.2 Tripal Blast

This module provides a basic interface to allow your users to utilize your server’s NCBI BLAST+. There is a simple
interface allowing users to paste or upload a query sequence and then select from available databases and a tabular
results listing with alignment information and multiple download formats (HTML, TSV, GFF3, XML) available.

Documentation Repository

3.6. Third-party Integration 273

https://github.com/tripal/tripald3/blob/7.x-1.x/README.md
https://github.com/tripal/tripald3
https://github.com/tripal/fields_generator/blob/master/README.md
https://github.com/tripal/fields_generator
https://github.com/tripal/tripal_install/blob/master/README.md
https://github.com/tripal/tripal_install
https://tripaltestsuite.readthedocs.io/en/latest/
https://github.com/tripal/TripalTestSuite
https://brapi.readthedocs.io/en/latest/
https://github.com/tripal/brapi
https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://github.com/tripal/tripal_blast/blob/7.x-1.x/README.md
https://github.com/tripal/tripal_blast

Tripal Documentation, Release 7.x-3.x

3.6.3 Tripal Galaxy

This module is for integration of Tripal and the Galaxy Project. It facilitates the creation of forms on your Tripal site
that submit jobs to a galaxy instance.

Documentation Repository

3.6.4 Tripal JBrowse

This module provides integration between Tripal sites and pre-existing GMOD JBrowse instances. It allows you to
create pages on your Tripal site with an embedded JBrowse instance by filling out a simple form.

Documentation Repository

3.6.5 VCF Filter

This modules provides a form interface so users can custom filter existing VCF files and export in a variety of formats.
The form simply provides an interface to VCFtools and uses the Tripal Download API to provide the filtered file to
the user.

Documentation Repository

3.7 Searching

3.7.1 CartograTree

CartograTree is a web-based application that allows researchers to identify, filter, compare, and visualize geo-
referenced biotic and abiotic data. Its goal is to support numerous multi-disciplinary research endeavors including:
phylogenetics, population structure, and association studies.

Documentation Repository

3.7.2 Mainlab Chado Search

Mainlab Chado Search is a module that enables advanced search function for biological data stored in a Tripal/Chado
database. By default, a set of search interfaces are provided, such as ‘Gene Search’ for searching genes and/or tran-
scripts, ‘Marker Search’ for searching genetic markers, and ‘Sequence Search’ for searching any sequences stored in
the Chado feature table. Searches for other data types, such as QTL, Map, Trait, Stock, Organism are also provided
but may require modification to the materialized view to adjust for site-specific data storage.

Documentation Repository

3.7.3 Tripal ElasticSearch

The Tripal ElasticSearch module allows you to easily manage the indexing and display of ElasticSearch on your Tripal
website. It also easily enables Cross-Site Querying, allowing you to connect to other Tripal sites and provide additional
search results to your users.

Documentation Repository

274 Chapter 3. Extension Modules

https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://tripal-galaxy.readthedocs.io/en/latest/?badge=latest
https://github.com/tripal/tripal_galaxy
https://github.com/tripal/tripal_jbrowse/blob/7.x-2.1.x/README.md
https://github.com/tripal/tripal_jbrowse
https://github.com/UofS-Pulse-Binfo/vcf_filter/blob/master/README.md
https://github.com/UofS-Pulse-Binfo/vcf_filter
https://cartogratree.readthedocs.io/en/latest/index.html
https://gitlab.com/TreeGenes/CartograTree
https://gitlab.com/mainlabwsu/chado_search/blob/master/README.md
https://gitlab.com/mainlabwsu/chado_search
https://github.com/tripal/tripal_elasticsearch/blob/master/docs/README.md
https://github.com/tripal/tripal_elasticsearch

Tripal Documentation, Release 7.x-3.x

3.7.4 Tripal MegaSearch

Tripal MegaSearch is a tool for downloading biological data stored in a Tripal/Chado database. The module was
designed to be generic and flexible so it can be used on most Tripal sites. Site administrators may choose from 1) a
set of predefined materialized views or 2) Chado base tables as the data source to serve data. If neither data source is
desired, developers may create their own materialized views and serve them through Tripal MegaSearch via a flexible
dynamic query form. This form allows filters to be added dynamically and combined using ‘AND/OR’ operators. The
filters correspond to the underlying data source columns so the user can filter data on each column.

Documentation Repository

3.7.5 Tripal Sequence Similarity Search

This module supports sequence similarity search on a Tripal website through a new dual application option. The Tripal
module provides access to the speed increase available through Diamond for BLASTP/BLASTX style searches as well
as traditional NCBI BLAST for BLASTN. Both applications are integrated into a single interface that provides file
upload or copy/paste sequence support for the query and access to formatted databases for NCBI BLAST or Diamond.
The target databases can be customized for the categories of whole genome, gene, protein, and transcriptome/unigene.
The administration interface allows the admin user to set what pre-indexed databases are available (which show up
in a dropdown menu). The module supports execution of the searches on a remote machine so that the search is not
running directly on the limited resources typically associated with web servers.

Documentation Repository

3.8 Visualization/Display

The following modules provide specialized displays for Tripal content types.

3.8.1 Analyzed Phenotypes

This module provides support and visualization for partially analyzed data stored in a modified GMOD Chado schema.
It is meant to support large scale phenotypic data through backwards compatible improvements to the Chado schema
including the addition of a project and stock foreign key to the existing phenotype table, optimized queries and well-
chosen indexes.

Documentation Repository

3.8.2 CvitEmbed

This module integrates CViTjs with Tripal to provide whole-genome visualizations. It creates one page per plot and
makes them accessible via the Drupal Navigation menu.

Documentation Repository

3.8.3 Mainlab Tripal Data Display

Mainlab Tripal Data Display contains a set of Drupal/PHP templates that organize and extend the default display of
the biological data hosted on a Tripal-enabled site (i.e. http://tripal.info). Supported data type includes organism,

3.8. Visualization/Display 275

https://gitlab.com/mainlabwsu/tripal_megasearch/blob/master/README.md
https://gitlab.com/mainlabwsu/tripal_megasearch
https://github.com/Ferrisx4/tripal_diamond/blob/master/README.md
https://github.com/Ferrisx4/tripal_diamond
https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://analyzedphenotypes.readthedocs.io/en/latest/index.html
https://github.com/UofS-Pulse-Binfo/analyzedphenotypes
https://github.com/LegumeFederation/cvitjs
https://github.com/UofS-Pulse-Binfo/cvitembed/blob/master/README.md
https://github.com/UofS-Pulse-Binfo/cvitembed
http://tripal.info

Tripal Documentation, Release 7.x-3.x

marker, QTL, germplasm (stock), map (featuremap), project, heritable phenotypic marker (MTL), environment (ND
geolocation), haplotype block, polymorphism, eimage, generic gene (genes created by parsing Genbank files using the
Mainlab `tripal_genbank_parser module), feature, and pub. Each of the templates can be turned on/off as
desired.

Documentation Repository

3.8.4 ND Genotypes

This module provides support and visualization of genotypic data stored in a modified GMOD Chado schema. The
3.x branch of this module represents a shift towards support for large scale genotypic datasets through backwards
compatible improvements to the Chado schema including a new gathering table for genotypes (genotype_call) modeled
after the Chado phenotype table, optimized queries and well-chosen indexes.

Documentation Repository

3.8.5 Phylotree

This extension provides a simple file formatter for Newick tree files using the Javascript library Phylotree for display.

Documentation Repository

3.8.6 Tripal Fancy Fields

This module provides additional fields for use with Tripal 3. The current version provides a single-series chart field
that can be displayed as a pie, donut, or bar chart, as well as, a simple table.

Documentation Repository

3.8.7 Tripal MapViewer

Tripal MapViewer module displays map data stored in Chado. MapViewer provides interfaces to view all linkage
groups of a map, choose a linkage group and zoom in to a specific region of a linkage group, compare maps that share
the same markers and change colors of markers/QTL.

The interface can be integrated into Tripal map page and hyperlinked to/from any Tripal page that are displayed in maps
(marker, QTL, heritable morphological marker and/or gene). MapViewer also provides a genome comparison view
with JBrowse integration and Dot plot and Correspondence Matrix support. The admin page allows site developers
some flexibility in the display pattern.

Documentation Repository

3.9 In Development

The following modules are not yet ready for production or not fully Tripal 3 compatible.

276 Chapter 3. Extension Modules

https://gitlab.com/mainlabwsu/mainlab_tripal/blob/master/README.md
https://gitlab.com/mainlabwsu/mainlab_tripal
https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Gold
https://nd-genotypes.readthedocs.io/en/latest/
https://github.com/UofS-Pulse-Binfo/nd_genotypes
http://evolution.genetics.washington.edu/phylip/newicktree.html
https://github.com/veg/phylotree.js/tree/master
https://cgit.drupalcode.org/phylotree/tree/README.md
https://www.drupal.org/project/phylotree
https://github.com/tripal/trpfancy_fields/blob/master/README.md
https://github.com/tripal/trpfancy_fields
https://gitlab.com/mainlabwsu/tripal_map/-/blob/7.x-2.x/README.md
https://gitlab.com/mainlabwsu/tripal_map

Tripal Documentation, Release 7.x-3.x

3.9.1 Tripal Apollo

Tripal Apollo lets you manage user accounts for your JBrowse Apollo instances on your Tripal site. Provides a form
to request apollo access, an Apollo instance content type that connects to Chado Organisms, and an administrative
interface for managing requests.

Documentation Repository

3.9.2 Tripal Multi-Chado

The Multi-Chado module is an extension for Tripal 2.x and 3.x (dev branch under testing) that can be used to install
more than one Chado instance across different schemata of your choice and it also enables the use of different Post-
greSQL database credentials allowing the administrator to do fine tuning of database accesses. With it you can use
a same Drupal instance for both a public and a private Chado instance, have different releases or separated species,
provide a sandbox, run tests on a blank instance and more (dev-staging-prod, etc.).

Documentation Repository

If you don’t see the module you are looking for here, try a Tripal-specific search on GitHub.

Informational links for this extension module list:

3.10 Tripal Module Rating System

This module rating system is meant to aid Tripal Site Administrators in choosing extension modules for their site. It
is also meant to guide developers in module best practices and celebrate modules which achieve these goals.

3.10.1 Bronze

• Has a public release.

• Should install on a Tripal site appropriate for the versions it supports.

• Defines any custom tables or materialized views in the install file (if applicable).

• Adds any needed controlled vocabulary terms in the install file (Tripal3).

• Provides Installation and admin instructions README.md (or RTD).

• Has a license (distributed with module).

3.10.2 Silver

• Follows basic Drupal Coding standards; specifically, code format and API documentation.

• Uses Tripal API functions. Specifically, it should use the

– Chado Query API for querying Chado (if using Chado as the storage system). (API, Tutorial)

– Tripal Jobs API for long running processes. (API)

3.10. Tripal Module Rating System 277

https://tripal-apollo.readthedocs.io/en/latest/
https://github.com/NAL-i5K/tripal_apollo
http://cgit.drupalcode.org/tripal_mc/plain/README.md?h=7.x-1.x
https://www.drupal.org/project/tripal_mc
https://github.com/search?q=topic%3Atripal
https://tripal.readthedocs.io/en/latest/dev_guide/rtd.html
https://www.drupal.org/docs/develop/standards/coding-standards
https://www.drupal.org/docs/develop/standards/api-documentation-and-comment-standards#drupal
http://api.tripal.info/api/tripal/tripal_chado%21api%21tripal_chado.query.api.inc/group/tripal_chado_query_api/3.x
http://api.tripal.info/api/tripal/tripal%21api%21tripal.jobs.api.inc/group/tripal_jobs_api/3.x

Tripal Documentation, Release 7.x-3.x

– TripalField class to add data to pages (Tripal3). (Tutorial)

• Provides ways to customize the module (e.g. drush options, field/formatter settings, admin UI).

• Latest releases should follow Drupal naming best practices.

– e.g. first release for Drupal 7 should be: 7.x-1.0.

3.10.3 Gold

• Extensive documentation for the module (similar to Tripal User’s Guide). (Tutorial)

• Unit testing is implemented using PHPUnit with the TripalTestSuite or something similar.

• Continuous integration is setup (e.g. such as with TravisCI).

• Imports data via Tripal’s importer class (Tripal3) (Tutorial).

• Tripal 3 fields are (Tutorial)

– Fully compatible with web services.

– The elementInfo function is fully implemented.

– The query and queryOrder functions fully implemented.

• Web Services uses Tripal’s Web Service Classes (Tripal3). (Tutorial)

• Code sniffing and testing coverage reports (optional but encouraged).

• Drupal.org vetted release (optional but encouraged).

3.10.4 Rate your Extension Module!

We encourage Tripal module developers to rate their modules. This can be done by Adding your Module to this list!

The following badges are for inclusion on your module README and documentation; however, they are only valid if
your module has been included in Extension Modules with the given rating.

reStructuredText

.. image:: https://tripal.readthedocs.io/en/7.x-3.x/_images/Tripal-Bronze.png
:target: https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html

→˓#Bronze
:alt: Tripal Rating: Bronze

Markdown

[![Tripal Rating Bronze Status](https://tripal.readthedocs.io/en/7.x-3.x/_images/
→˓Tripal-Bronze.png)](https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_
→˓rating.html#Bronze)

HTML

278 Chapter 3. Extension Modules

https://tripal.readthedocs.io/en/latest/dev_guide/rtd.html

Tripal Documentation, Release 7.x-3.x

<a href='https://tripal.readthedocs.io/en/7.x-3.x/extensions/module_rating.html#Bronze
→˓'>

<img src='https://tripal.readthedocs.io/en/7.x-3.x/_images/Tripal-Bronze.png' alt=
→˓'Tripal Rating: Bronze' />

Note: Replace all instances of Bronze with either Silver or Gold for those badges.

3.11 Adding your Module to this list!

We would love for you to contribute your own module to this list! This is done by creating a Pull Request (PR) to
Tripal modify our documentation.

3.11.1 Instructions

1. From the current page, click the category in the list above that best fits your module.

2. Click the “Edit on Github” link at the top of the page.

3. Add your module using the following template.

Module Name

This module loads in X, Y, and Z. It provides admin for A and B, and user area C.

`Documentation <https://yourmodule.readthedocs.io/en/latest/index.html>`__
`Repository <https://github.com/you/yourmodule>`__

4. Rate your module using the Tripal Module Rating System and mention in your PR description which require-
ments your module meets.

3.11.2 Guidelines

• Make sure to follow alphabetical order when choosing where on the category page to add your module.

• Please write two sentences MAXIMUM about the function of the module.

• Include links to both the documentation (even if it’s your README) and the repository (e.g. Github, Gitlab)

• If your module doesn’t fit well in any of the existing categories, still pick the best one but then feel free to
suggest a new category in the PR description.

• Extension Modules must be publicly available for download

3.11. Adding your Module to this list! 279

https://github.com/tripal/tripal

Tripal Documentation, Release 7.x-3.x

280 Chapter 3. Extension Modules

CHAPTER 4

Tripal Community

4.1 Guidelines for Contribution to Tripal

The following guidelines are meant to encourage contribution to Tripal source-code on GitHub by making the process
open, transparent and collaborative. If you have any feedback including suggestions for improvement or constructive
criticism, please comment on the Github issue. These guidelines apply to everyone contributing to Tripal whether
it’s your first time (Welcome!) or project management committee members.

Note: These guidelines are specifically for contributing to Tripal. However, we encourage all Tripal extension
modules to consider following these guidelines to foster collaboration among the greater Tripal Community.

Note: Guidelines serve as suggestions (should) or requirements (must). When the word “should” is used in the text
below, the stated policy is expected but there may be minor exceptions. When the word “must” is used there are no
exceptions to the stated policy.

4.1.1 Github Communication Tips

• Don’t be afraid to mention people (@username) who are knowledgeable on the topic or invested. We are
academics and overcommitted, it’s too easy for issues to go unanswered: don’t give up on us!

• Likewise, don’t be shy about bumping an issue if no one responds after a few days. Balancing responsibilities
is hard.

• Want to get more involved? Issues marked with “Good beginner issue” are a good place to start if you want to
try your hand at submitting a PR.

• Everyone is encouraged/welcome to comment on the issue queue! Tell us if you

– are experiencing the same problem

– have tried a suggested fix

281

https://github.com/tripal/tripal/issues/344
https://github.com/tripal/tripal

Tripal Documentation, Release 7.x-3.x

– know of a potential solution or work-around

– have an opinion, idea or feedback of any kind!

• Be kind when interacting with others on Github! (see Code of Conduct below for further guidelines). We want to foster a welcoming, inclusive community!

– Constructive criticism is welcome and encouraged but should be worded such that it is helpful :-
) Direct criticism towards the idea or solution rather than the person and focus on alternatives or
improvements.

4.1.2 Bugs

• Every bug should be reported as a Github issue.

– Even if a bug is found by a committer who intends to fix it themselves immediately, they should create
an issue and assign it to themselves to show their intent.

• Please follow the issue templates as best you can. This information makes discussion easier and helps us resolve the problem faster.

– Also provide as much information as possible :-) Screenshots or links to the issue on a development
site can go a long way!

• Bonus points for unit tests to ensure the bug does not return :-)

4.1.3 Feature Requests

• Every feature request should start as an issue so that discussion is encouraged :-)

• Please provide the following information (bold is required; underlined strengthens your argument):

– Use Case: fully describe why you need/want this feature

– Generally Applicable: Why do you feel this is generally applicable? Suggest other use cases if possi-
ble. Mention (@) others that might want/need this feature.

– Implementation: Describe a possible implementation. Bonus points for configuration, use of ontolo-
gies, ease of use, permission control, security considerations

• All features should be optional so that Tripal admin can choose to make it available to their users.

– When applicable, new features should be designed such that Tripal-site admin can disable them.

– Bonus points: for making new features configurable and easily themed.

• Feature requests will be voted on by the project management and advisory/steering committees to determine if it should be included in core, an existing extension module or it’s own extension module.

– Votes should be based on whether this feature is generally applicable and doesn’t exclude existing
users and not be biased by the needs of your own Tripal site.

• If a feature isn’t suitable for inclusion within Tripal core, use the issue discussion as a springboard to create a
Tripal extension module!

Note: In the future there will be a set of guidelines for what should be included in core. This will make the process
of requesting new features more streamlined, inclusive and transparent.

282 Chapter 4. Tripal Community

Tripal Documentation, Release 7.x-3.x

4.1.4 Pull Request (PR) Guideline

The goal of this document is to make it easy for A) contributors to make pull requests that will be accepted, and B)
Tripal committers to determine if a pull request should be accepted.

• PRs that address a specific issue must link to the related issue page.

– In almost every case, there should be an issue for a PR. This allows feedback and discussion before
the coding happens. Not grounds to reject, but encourage users to create issues at start of their PR.
Better late than never :).

• Each PR must be tested/approved by at least 1 contributor, if approved, a “trusted committer” will merge the PR.

– Testers should describe how the testing was performed if applicable (allows others to replicate the
test).

– While Tripal’s review body is small, the code review must be a thorough functional test.

– At the Project Management Committee’s (PMC) discretion, a PR may be subject to a non-functional
review. Generally these are small and obvious commits.

– Tripal’s guiding philosophy is to encourage open contribution. With this in mind, committers should
work with contributors to resolve issues in their PRs. PRs that will not be merged should be closed,
transparently citing the reason for closure. In an ideal world, features that would be closed are
discouraged at the issue phase before the code is written!

– The pull request branch should be deleted after merging (if not from a forked repository) by the person
who performs the merge.

• PRs that include new functionality must also provide Unit Tests.

– Tests must test the new functionality added.

– Bonus points for testing all surrounding functionality.

– For example, when adding feature X to custom tables, the PR must include tests for feature X and we
would be greatly appreciative if it included tests for custom tables in general :-D.

• PRs should pass all Travis-CI tests before they are merged.

• Branches should follow the following format:

– [issue_number]-[tripal_version]-[short_description]

– tripal_version being Tv2, Tv3, etc.

– -[short_description] being optional but highly encouraged

• Must follow Drupal code standards

• PRs for new feature should remain open until adequately discussed (see guidelines below) and approved by a
vote (all members of the PMC must vote in favour).

4.1.4.1 How to create a PR

There are great instructions on creating a PR on Digital Ocean: How To Create a Pull Request on GitHub.

The tl;dr version:

1. Fork the repository or update an existing fork

2. Clone the fork

3. Create a branch specific to your change: [issue_number]-[tripal_version]-[short_description]

4.1. Guidelines for Contribution to Tripal 283

https://www.drupal.org/docs/develop/standards
https://www.digitalocean.com/community/tutorials/how-to-create-a-pull-request-on-github
https://docs.github.com/en/github/getting-started-with-github/fork-a-repo
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork
https://docs.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository
https://git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging

Tripal Documentation, Release 7.x-3.x

4. Make your changes, committing often with useful commit messages.

5. Push your changes to your fork.

6. Create a PR by going to your fork: target should be tripal:7.x-3.x. For specifics, see guidelines above.

4.1.5 How PRs and Issues are Handled

The Project Management Committee (PMC) and trusted committers will follow specific rules when working with all
issues and pull requests. The rules are listed below. Anyone may provide bug fixes in which case some of the following
will apply to all:

• Every task related to Tripal (bug, feature requests, documentation, discussions) should be in Github,
either as it’s own issue or grouped with like tasks into a single issue. This effectively puts our todo list
on github making it transparent to anyone who wants to help. It has the benefit of showing how active our
community is, keeps everyone informed with where Tripal is headed and makes it easy for others to chime in
with experience, comments and support.

• Guidelines for Tagging Issues:

– The first committer who comments on an issue should tag it with the version of Tripal it applies to.

– Issues with a suggested fix or work-around should be tagged with “Fix Required” to let others know
a PR is needed.

– Only tag an issue with “bug” once it has been shown to be reproducible. If it’s not reproducible by a
committer but you feel it is a bug then tag it as “potential bug”.

– If multiple users have commented that a bug affects them, tag it as “affects multiple users”.

– Issues that require a PR and someone with relatively little Tripal experience could fix should be tagged
with “Good beginner issue”

– All feature requests should be tagged as an “enhancement”

– If you are the first reviewer to confirm a PR works, tag it with “Reviewer #1 Approval”

• Guidelines for Discussion:

– Issues that do not require discussion (PRs still require 2 reviews): minor bug fixes, changes to inline
comments, addition of unit tests, minor code typos

– Issues that require discussion: major changes, new features, and issue at the discretion of the PMC -
Add the “discussion” tag to any issue requiring discussion - Discussion Tag is removed when adequate
discussion has taken place (at the discretion of the person who added the tag) - Additionally, new
features require that all members of the PMC have had a chance to contribute to the discussion and
feel satisfied.

• Please use the assignment feature to clarify who will be contributing the code to prevent duplication of effort.

– When assigning yourself, comment on what your timeline is. This allows others to jump in if they
have time sooner.

– If you would like to take over a PR assigned to someone else , comment asking for an update and
offer your services.

– If the author of the issue plans on contributing the fix themselves but is not a committer, they should
indicate that in the issue. A committer will assign them the issue.

• When you start working on an issue, you should create the branch and push to it regularly. If you are working on a fork, you’re encouraged to link to it in the issue.

284 Chapter 4. Tripal Community

https://git-scm.com/docs/git-commit#_examples
https://git-scm.com/docs/git-push#_examples
https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request-from-a-fork

Tripal Documentation, Release 7.x-3.x

– Committers can work on a fork or directly. If the branch is on tripal/tripal, then other committers
should contribute via PR unless otherwise agreed

• If an issue is identified as being relevant to another repository (ie a tripal module, not core), a new issue should
be created, cross referenced, and the original issue should be closed encouraging discussion in the module.

4.1.6 Code of Conduct

• Be nice! If that’s insufficient, Tripal community defers to https://www.contributor-covenant.org/

4.1.7 Testing/CI

Comprehensive guides to testing are available in the Unit Tests for Tripal section. Below are guiding principles.

• All tests pass.

• Tests don’t modify db: use transactions and factories.

• Tests are organized properly: by submodule and function.

• Tests run quietly.

4.2 Unit Tests for Tripal

This guide is for developers looking to contribute code to the core Tripal project. It introduces the testing philosophy
and guidelines for Tripal core. Tripal uses Tripal Test Suite, which brings bootstraps your Tripal site for PHPUnit. It
also provides conveniences like name spacing, seeders, transactions, and data factories.

4.2.1 Tripal Test Suite

For a basic introduction of Tripal Testing, please see the Test Suite documentation.

4.2.1.1 Installation

After cloning the Tripal Github repo, you will need to install the developer dependencies required to run tests locally.
To do this, you’ll need to install Composer, and then execute composer install in your project root.

Remember to run composer update to update Tripal TestSuite before writing and running new tests. This is
especially important when running pull requests that contribute unit tests. If tests are passing on the Travis environment
but not on your machine, running composer update might resolve the problem.

4.2.2 Testing criteria

For facilitate accepting your pull requests, your code should include tests. The tests should meet the following guide-
lines:

• All tests pass

• Tests pass in all environments (Travis)

• Tests don’t modify the database (use transactions or clean up after yourself)

• Tests are properly organized (see organization section below)

4.2. Unit Tests for Tripal 285

https://www.contributor-covenant.org/
https://tripaltestsuite.readthedocs.io/en/latest/
https://github.com/tripal/tripal
https://getcomposer.org/doc/00-intro.md

Tripal Documentation, Release 7.x-3.x

• Tests run quietly

4.2.3 Test organization

Tests should be placed in tests/. This root directory contains the following files:

• bootstrap.php: Test directory configuration. Don’t modify this.

• DatabasSeeders/: Database seeders, for filling Chado with permanent test data.

• DataFactory.php: Data factories, for providing test-by-test Chado data.

• example.env: An example environment file. Configure this to match your development site and save
as .env. Read more here: https://tripaltestsuite.readthedocs.io/en/latest/environment.html

Test files must end with Test.php to be recognized by PHPUnit. The tests themselves should be organized by
submodule, and category.

4.2.3.1 Submodules

• tripal

• tripal_bulk_loader

• tripal_chado

• tripal_chado_views

• tripal_daemon

• tripal_ds

• tripal_ws

4.2.3.2 Categories

• API

• theme

• views

• drush

• fields

• entities

• admin

• loaders

So for example, tests for the file tripal/api/tripal.jobs.api.inc should go in tests/tripal/
api/TripalJobsAPITest.php. tests that don’t fit in any of these categories should be placed in tests/
[submodule]/.

In order for tests to run locally, you’ll need an environmental file tests/.env with the project root, base url, and
locale. See tests/example.env for an example.

286 Chapter 4. Tripal Community

https://github.com/statonlab/TripalTestSuite#database-seeders
https://github.com/statonlab/TripalTestSuite#factories
https://tripaltestsuite.readthedocs.io/en/latest/environment.html

Tripal Documentation, Release 7.x-3.x

4.2.4 Writing tests

4.2.4.1 Tagging tests

You should tag your test with relevant groups. For example, our Tripal Chado API tests should be tagged with @group
api. We don’t need to tag it with @group chado because it is in the testsuite (the submodule folder) Chado.

If your test is related to a specific issue on the Tripal repo, thats great! You can use the @ticket tag to link it: ie,
@ticket 742 for issue number 742.

4.2.4.2 Defining the test class

The test class file should extend StatonLab\TripalTestSuite\TripalTestCase instead of TestCase to
take advantage of the Tripal Test Suite tools. Tests should use a database transaction to ensure the database state is the
same at the start and end of the test case. Your test class name should match the file.

use StatonLab\TripalTestSuite\DBTransaction;
use StatonLab\TripalTestSuite\TripalTestCase;

class TripalChadoOrganismAPITest extends TripalTestCase {
use DBTransaction;

}

4.2.4.3 Defining individual tests

An ideal test operates independently of other tests: by default, unit tests run in random order. How, then, do we provide
our test with relevant data? We use Factories, which you can read about on in the Tripal Test Suite documentation. In
the below example, we create an organism with known information, and assert that we can retrieve it with the Chado
API functions.

namespace Tests\tripal_chado\api;

use StatonLab\TripalTestSuite\DBTransaction;
use StatonLab\TripalTestSuite\TripalTestCase;

class TripalChadoOrganismAPITest extends TripalTestCase {

use DBTransaction;

/**
* Test tripal_get_organism.

*
* @group api

*/
public function test_tripal_get_organism() {

$genus_string = 'a_genius_genus';
$species_string = 'fake_species';

$organism = factory('chado.organism')->create([
'genus' => $genus_string,
'species' => $species_string,

]);

(continues on next page)

4.2. Unit Tests for Tripal 287

https://tripaltestsuite.readthedocs.io/en/latest/factories.html

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

$results = [];

$results[] = tripal_get_organism(['organism_id' => $organism->organism_id]);
$results[] = tripal_get_organism([

'genus' => $genus_string,
'species' => $species_string,

]);

foreach ($results as $result) {
$this->assertNotFalse($result);
$this->assertNotNull($result);
$properties = get_object_vars($result);
$this->assertArrayHasKey('genus', $properties);
$this->assertEquals($genus_string, $result->genus);

}
}

public function test_tripal_get_organism_fails_gracefully() {
$result = tripal_get_organism([

'genus' => uniqid(),
'species' => uniqid(),

]);

$this->assertNull($result);
}

}

Note: You typically will want at least one test per public method in your file or class. Tests should start with test_,
otherwise it wont run by default in PHPUnit (you can also declare that it is a test in the method documentation using
@test.

4.2.4.4 Testing quietly

Tests should run quietly. If the output goes to standard out, you can use ob_start() and ob_end_clean().

ob_start();//dont display the job message
$bool = tripal_chado_publish_records($values);
ob_end_clean();

If the message comes from the Tripal error reporter, you must use "TRIPAL_SUPPRESS_ERRORS=TRUE" to sup-
press the Tripal error reporter message.

/**
* Test chado_publish_records returns false given bad bundle.

*
* @group api

*/
public function test_tripal_chado_publish_records_false_with_bad_bundle() {

putenv("TRIPAL_SUPPRESS_ERRORS=TRUE");//this will fail, so we suppress the tripal
→˓error reporter
$bool = tripal_chado_publish_records(['bundle_name' => 'never_in_a_million_years']);
$this->assertFalse($bool);

(continues on next page)

288 Chapter 4. Tripal Community

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

putenv("TRIPAL_SUPPRESS_ERRORS");//unset
}

4.3 Contributing to the Documentation

The Tripal documentation is written in **Restructured Text**, compiled with Sphinx, and built/hosted with ReadThe-
Docs. The docs directory, when compiled, is hosted at https://tripal.readthedocs.io/en/latest/.

For minor changes, you can simply Edit the file using the Github editor, which will allow you to make a Pull Request.
Once approved, your changes will be reflected in the documentation automatically!

4.3.1 Guide

4.3.1.1 Install Sphinx

For minor changes, you don’t need to build the documentation! If you want to see how your changes will look on the
built site, however, you will need Sphinx installed.

For more information, please see the Sphinx setup guide: http://www.sphinx-doc.org/en/master/usage/quickstart.html

4.3.1.2 Building your changes

For more extensive edits, or when contributing new guides, you should build the documentation locally. From the
docs root (eg /var/www/html/sites/all/modules/tripal/docs/, execute make html. The built
site will be in docs/_build/html/index.html.

4.3.1.3 Tripal conventions

Please follow these guidelines when updating our docs. Let us know if you have any questions or something isn’t
clear.

Please place images in the same folder as the guide text file, following the convention [file_name].[n].[optional
description].[extension]. For example, configuring_page_display.3.rearrange.png or
configuring_page_display.1.png are both located in docs/user_guide/ and are part of the
configuring_page_display.rst guide.

We currently use the following syntax:

Title of File (using title case)
=================================

Introduction text.

Section Title

We use double backticks to indicate ``inline-code`` including file names, function
→˓and method names, paths, etc.

Longer code-blocks should begin with the ``.. code-block:: [type]`` directive and
→˓should be indented at least one

(continues on next page)

4.3. Contributing to the Documentation 289

http://docutils.sourceforge.net/rst.html
http://www.sphinx-doc.org/en/master/usage/quickstart.html
https://readthedocs.org/
https://readthedocs.org/
https://tripal.readthedocs.io/en/latest/
https://help.github.com/articles/editing-files-in-your-repository/
http://www.sphinx-doc.org/en/master/usage/quickstart.html

Tripal Documentation, Release 7.x-3.x

(continued from previous page)

level. There should also be a blank line before and after it as shown below.

.. code-block:: sql
if ($needs_documentation) {

use $these_guidelines;
$contribute_docs = $appreciated;

}

Section 1.1 Title
^^^^^^^^^^^^^^^^^

The use of appropriate sections makes reading documentation and later specific
→˓details easier. Sub sections such
as this one will be hidden unless the main section is already selected.
```

4.4 Tripal Governance

We wish to maintain Tripal as an open source project and therefore want to empower Tripal adopters and developers
as much as possible in the development of Tripal, while keeping the project coherent, focused, and useable to a wide
range of adopters. As the Tripal community grows, it is prudent to set up a formal governance model. This document
describes this model.

The Tripal project recognizes these roles:

• End-Users: They are users of Tripal-based websites (not developers of a site).

• Adopters: They have downloaded Tripal. Maybe they even have a site!

• Extension Contributors: they extend Tripal through modules, themes, views, data loaders, fields, and/or
libraries.

• Core Code Contributors: contribute code to the Tripal “core”, comments, discussion, questions, bug
reports.

• Core Code Committers: write access to the Tripal “core” repository.

• Tripal Project Management Committee (PMC): make code relevant decisions, (i.e. ensure code stan-
dards, robustness, and long-term design objectives are maintained).

• Tripal Advisory Committee (TAC): Provide guidance to the PMC for policy-level and future planning
recommendations.

4.4.1 Adopters

Any person who wishes to or has downloaded/set up a Tripal site. Everyone in this group is invited to the monthly
user meetings and is encouraged to ask questions and make suggestions.

4.4.2 Extension Contributors

These are developers who are extending Tripal. Extension contributors are encouraged to make their extensions
available on the Tripal GitHub organization and list them on the Tripal Documentation. Extension contributors are
also encouraged to use the Tripal Module Rating System as a guideline for developing high quality modules, which
are easier to adopt by the greater Tripal community.

290 Chapter 4. Tripal Community

https://github.com/tripal/tripal
https://github.com/tripal/tripal
https://github.com/tripal
https://tripal.readthedocs.io/en/latest/extensions.html
https://tripal.readthedocs.io/en/latest/extensions/module_rating.html


Tripal Documentation, Release 7.x-3.x

4.4.3 Core Code Contributors

Core Code Contributors are active members of the Tripal community who make suggestions to improve and/or con-
tribute code to Tripal Core. Core Code Contributors are encouraged to submit pull requests to the Tripal core and
attend monthly user calls. For more information, see the Guidelines for Contributing to Tripal core.

Responsibilities include:

• Monitor Tripal core issue queue.

• Submit pull requests.

4.4.4 Committers

These are dedicated Tripal developers who are trusted to commit pull requests directly to the Tripal core repository.
They are encouraged to be active in the Tripal community and routinely review pull requests. Developers are added to
to committers group by unanimous agreement from the PMC.

Responsibilities include:

• Monitor Tripal core issue queue.

• Review and merge pull requests.

See the guidelines for contributors for more details.

4.4.5 The Tripal Project Management Committee (PMC)

This group consists of experienced Tripal developers.

Responsibilities include:

• Ensure good practices, for example, submitting errors, questions, and requests via GitHub.

• Monitor issue queue (though this responsibility isn’t limited to the PMC).

• Resolve questions and differences of opinions among Contributors.

• Work with the TAC to make decisions about significant new features. Examples:

– a new core module,

– designing a module-specific REST API,

– new technologies or libraries used by the core code.

• Avoid feature bloat; judge what contributions benefit many versus those that are specific to the needs of
the contributor.

• Final approval of submitting guidelines (see guidelines for contribution).

• Set coding standards.

• Ensure Tripal remains generic and useful to a wide range of groups.

The PMC will strive to obtain consensus, and all members ensure that the Tripal community and the TAC are informed
on decisions. Any individual member can call a meeting. The term will be two years with the possibility of extension.
At least one member will serve on the TAC; this person will be elected by vote within the PMC.

4.4. Tripal Governance 291

https://tripal.readthedocs.io/en/latest/contributing/pull_requests.html
https://tripal.readthedocs.io/en/latest/contributing/pull_requests.html
https://tripal.readthedocs.io/en/latest/contributing/pull_requests.html


Tripal Documentation, Release 7.x-3.x

4.4.5.1 Communication and Meetings

The PMC will meet as necessary. It is expected that frequent decisions will need to be made, some through GitHub
issue comments, Slack, e-mail, or conference calls.

4.4.6 Tripal Advisory Committee (TAC)

The Tripal Advisory Committee (TAC) provides leadership, guidance, future planning, advocacy and coordination
for Tripal. The TAC acts in an advisory capacity only by determining sets of recommendations for Tripal. All
recommendations will be provided to the PMC. Topics include recommended technologies, overall approach, software
architecture, development priorities, timelines, funding strategies, best practices, support for a fair and focused open
source development strategy.

At least one member of the PMC must be on the TAC to ensure that the reality of what is and is not feasible for the
developers is not lost. Additionally, close communication between the TAC and PMC is critical, as is transparency of
the TAC discussions to the entire Tripal community. All members of the PMC are welcome at TAC meetings.

4.4.6.1 Membership

The TAC should include “internal” and “external” members. Internal members are individuals who manage Tripal
websites or lead teams engaged in active development, possibly with funding to do so. External members may be
outside the Tripal community altogether, and may include government, non-profit, or industry representatives who
are stakeholders for one or more Tripal databases (but not active managers of a Tripal site) and/or specialists in such
disciplines as cyberinfrastructure, bioinformatics, genomics, breeding.

• Terms are for two years.

• Two year memberships can be renewed for individuals who wish to stay on to complete a particular objective.

• Membership is capped at 15.

– Initial Setup:

* Start small and move larger as needed.

* Set minimum sizes for number of internal and external members.

* Committee should be organized before inviting external members.

* Stagger ends of terms to ensure continuity.

• The minimum number of internal members is 3.

• The number of internal members should not be less than 1/2.

• The target number of external members is 5.

• If the TAC decides to replace a leaving member, the current members will develop a list of possible candidates.
The chair will contact each in turn until the membership slot is filled.

• Members will be asked to serve by the current TAC.

Responsibilities include:

• Serving a minimum two year term, beginning with the yearly board meeting (see below) in conjunction
with the January Plant and Animal Genome Conference in San Diego.

• Respond to issues in a timely manner when contacted directly. Members are strongly encouraged to
become part of the TAC GitHub group, and if they wish to comment or discuss agenda items directly with
the community, to do so in the GitHub issue queue (instead of the email list serve).

292 Chapter 4. Tripal Community



Tripal Documentation, Release 7.x-3.x

• Attend the annual January meeting at PAG and at least three of the quarterly meetings.

• Review agenda and supporting materials prior to meetings.

• Stay informed about Tripal, its member databases, developers, and users.

In addition, internal members are responsible for:

• Actively communicating with the Tripal community, both to collect ideas and concerns and to inform the
community about TAC plans for Tripal.

• Engaging in the Tripal Core GitHub Issue queue on “discussion” issues.

4.4.6.2 TAC Chair

The board will be led by a chair to be elected by TAC members at the January meeting annually (see below). One or more vice-chairs can be designated by the chair. The chair will ensure that the following is accomplished, delegating responsibilities as needed:

• Organize, announce and lead TAC meetings.

• Write the meeting agenda and post to Tripal.info.

• Provide supporting materials for review at least 1 week before TAC meetings.

• Ensure that the agenda items that would benefit from review by the community are posted to the GitHub
Tripal core issue queue. Ensure that any GitHub issue discussions are linked on the agenda and available
for review by the TAC.

• Ensure meeting notes are taken by someone present at the meeting and posted to Tripal.info.

• Call for votes on TAC recommendations when community voting is required.

• Call additional meetings if needed.

• Facilitate communication between the TAC and PMC.

• Filling vacant slots on the TAC.

• The chair has voting privileges.

4.4.6.3 TAC Meeting Agenda Items

Strongly encouraged to be posted to the GitHub Tripal core issue queue as well as to tripal.info, to inform and solicit
community comment. TAC meeting agendas will include issues tagged “TAC Next Meeting” on the GitHub Tripal
core issue queue. Other agenda items may be added by the TAC chair or members, or by the PMC. These issues will
be closed after the meeting.

4.4.6.4 Communication and Meetings

The primary TAC meeting will be held in January of each year, at the Tripal codefest. In-person attendance is strongly
encouraged, but a teleconference option will be provided. Each issue on the agenda will be discussed, and if needed,
the chair will call for a vote to determine the final recommendation of the TAC. Votes carry based on simple majority.
All discussion, votes and objections will be recorded in meeting notes, which will be posted on Tripal.info.

Additional teleconference TAC meetings will be held once per quarter (April, July, October). These could be held in
place of the monthly Tripal User’s Meeting to avoid meeting overload.

TAC meetings outside the above schedule may be called by the TAC chair. These will only be called in urgent
situations. In less urgent situations, the TAC chair or the TPMC can contact the internal members of the TAC and
request a meeting or solicit comments via email, GitHub issue, or Slack.

4.4. Tripal Governance 293



Tripal Documentation, Release 7.x-3.x

At any time the TPMC may communicate with members of the TAC with expertise in specific areas if needed to assist
in decision making.

4.4.7 Changes to this Document

These guidelines define the structure for official Tripal Management and Governance. If you have comments or
questions, please post them as a Github issue or ask them at the user’s meeting. Changes to this document will be
made after adequate discussion has occurred and the project management committee has voted in favor of the change.

4.5 Funding Proposal Development

Tripal fully supports all community members who want to submit grant proposals for Tripal extensions. Extension
development is outside the purview of the Tripal governance structure, although the Tripal Project Management Com-
mittee (TPMC) and Tripal Steering Committee (TSC) are available to help with grant submissions, through alignment
with Tripal core long term goals, letters of support, etc.

PIs planning to write a grant that would fund any development related to Tripal core are strongly encouraged to
engage the TPMC and TSC early in the planning process to ensure the grant aligns with the long term community
goals. Any core development plans are still required to go through the Tripal governance structure. Specifically, only
development approved by the TPMC and TSC will be implemented or accepted in core. PIs, especially if funded, are
strongly encouraged to engage with the Tripal community and to request membership in the TPMC and/or TSC.

294 Chapter 4. Tripal Community

https://github.com/tripal/tripal/issues/new?template=discussion.md

	Tripal v3 User’s Guide
	What Is Tripal?
	Install Tripal
	Pre-planning
	IT Infrastructure
	Technical Skills
	Development and Production Instances

	DRUPAL_HOME Variable
	Server Setup
	Server Setup (Ubuntu 18.04 LTS)
	Server Setup (Ubuntu 16.04 LTS)
	Server Setup (CentOS 7)

	Drush Installation
	Install Drush

	Installation Method #1: Rapid Installation
	Database Setup
	Tripal Installation

	Installation Method #2: Step-by-Step Manual Installation
	Drupal Installation
	Tripal Prerequisites
	Tripal Installation

	Upgrade from Tripal v2 to v3
	Step 1: Upgrade Tripal
	Step 2: Migrate Content
	Step 3: Use Legacy Templates (optional)
	Step 4: Delete Tripal v2 Content and Publish Tripal v3 Content
	Troubleshooting

	Automating Job Execution
	Automating Tripal Tasks

	Theming your Site
	Changing the Look-and-Feel
	Customizing a Theme


	Brief Drupal Overview
	User Account Page
	Creating Content
	Finding Content
	Site Administration
	Modules
	Themes
	Blocks
	Menus
	URL Path
	Site Configuration

	User Accounts

	Learn Chado
	Working with Content Types
	Creating Content Types
	Find a Controlled Vocabulary (CV) Term
	How to Add a CV Term
	Create a Tripal Content Type

	Setting Page Titles and URLs
	Setting Page Titles
	Setting URLs

	Configuring Page Layout
	Rearranging Fields
	Removing Fields and/or Field Labels
	Changing Tripal Pane Names
	Display/Hide Tripal Panes on Page Load

	Hide Empty Fields and AJAX loading
	Hiding Empty Fields
	Using AJAX to Load Fields

	Field Specific Permissions
	Why Field Permissions?
	Installing the Drupal Field Permissions module
	Setting Field-specific Permissions

	Handling Orphaned Entities

	Setup of an Example Site
	Organisms
	Creating an Organism Page
	Load data from NCBI Taxonomy
	Adding New Fields
	Further Customizations

	Analyses
	Cross References
	Controlled Vocabularies
	Genomes and Genes
	Loading Feature Data
	Loading a GFF3 File
	Loading FASTA files
	Creating Gene Pages
	Customizing Transcripts on Gene Pages

	Importing Publications
	Manually Adding a Publication
	Import of Publications
	Import from the USDA National Agricultural Library

	Functional Annotations
	Module Setup
	Adding BLAST Results
	Adding InterProScan Results
	Adding KEGG Results
	Managing Gene Ontology Annotations


	File Management
	User Quotas
	User’s Files

	Materialized Views
	Custom Tables
	Searching
	Tripal Content-Specific Search Tools
	Search API Module: Site-Wide Searching
	Installing Drupal Search API
	Define your Search Backend/Server
	Define a Search Index
	Creating a Search Interface for your users
	Configuring What is displayed for each Search Result
	Adding the Keywords Search Box
	Sort by “Relevance”
	Only Show results when user clicks Search

	Tripal Elasticsearch Module

	Job Management (Tripal Daemon)
	Features
	Installation
	Usage

	Web Services
	Overview
	Enable Web Services
	Exploring Web Services
	Structure of a Web Service Response
	Primary Services
	The Content Service
	Content Type Listing
	Content Type Members (Entities)
	Content (Entity) Resource
	Searching for Content
	Searching Limitations
	Hiding or Adding Content

	Bulk Loader
	Plan How to Store Data
	Creating a New Bulk Loader Template
	Creating a Bulk Loader Job (importing a file)
	Sharing Your Templates with Others

	Customizing Your Site

	Developer’s Guide
	Introduction to the Tripal API
	Requirements

	Tripal Data Structures
	Bundles (Content Types)
	Entity
	Fields
	Field Instances
	Entity Types

	Module Development Best Practice
	The Drupal Devel Module
	Add your module to Tripal.info
	Coding Best Practices
	Host your code on GitHub
	Associate the GitHub repository with Tripal
	DOIs
	Testing and Continuous Integration
	Documentation
	Coding Standards


	Accessing Chado
	The Chado Query API
	Generic Queries to a specific chado table
	Generic Queries for any SQL
	Loading of Variables from chado data

	The Chado Schema API
	Ensuring columns Tables & Columns exist
	Checking the Schema Version
	Retrieving a list of tables
	Ensuring your Chado instance is compliant
	Schema Definition


	Creating Custom Modules
	Creating a Custom Field
	Selecting Vocabulary Terms
	Ontologies: what and why?
	Storage of Terms in Chado
	Vocabulary Short Names and Namespaces

	Manual Field Creation
	Directory Structure for Fields
	Anatomy of the ChadoField Class
	Static Member Variables
	The load() function.
	elementInfo() function
	query() function

	Creating a Custom Widget
	The Form
	Validation
	Saving the Data

	Creating a Custom Formatter
	The view() function.
	Creating Pagers
	The settingsForm() Function.
	The settingsSummary() Function.

	AJAX Responsive Formatters
	Drupal and AJAX
	Example form and field

	Attach Fields to Content Types
	The hook_bundle_fields_info() function
	Programmatically Attaching Fields
	Allowing Manual Attachment of Fields

	Easier Field Creation: Tripal Field Generator

	Exporting Field Settings With Drupal Features
	Why Drupal Features?
	Version control
	How many Features?
	A Hazard: Mapping bundle IDs

	Drupal Features Tutorial
	Configuring the bundle fields
	Exporting the bundle field displays
	Importing the feature configuration


	Creating Custom Data Loaders
	Create a Custom Module
	Create the Class File
	Static Variables
	Form Components
	The form function
	The formValidate function

	Importer Execution
	The run function
	Importing the File

	Logging and Progress
	The logMessage function
	The setTotalItems and setItemsHandled functions

	Testing Importers
	Example file
	Loading the Importer


	Creating Custom Web Services
	Introduction
	Getting Started
	Documenting the Services
	Implementing a Collection Resource
	Simplifying the Property Keys
	Implementing a Resource
	Documenting Properties
	More on Parameters
	Implementing Other Operations
	Controlling Access to Resources

	Continuous Integration
	Using GitHub Workflows
	Telling GitHub about your workflow
	Configuring a workflow to run PHPUnit tests

	Checking your Action
	Adding the Badge to your README

	Using ReadTheDocs
	What is ReadTheDocs?
	How do I add ReadTheDocs to my project?
	What should my documentation include?

	Video Tutorials
	Testing
	Developer Tools
	Other


	Extension Modules
	Administrative
	Private BioData
	Tripal Alchemist
	Tripal Curator
	Tripal HeadQuarters

	Analysis/Annotation
	Tripal Analysis Expression
	Tripal Analysis Blast
	Tripal Analysis KEGG
	Tripal Analysis Interpro
	Tripal CV-Xray
	Tripal OrthoQuery

	Breeding
	BIMS

	Data Loading/Collection
	Genotype Loader
	Mainlab Chado Loader
	Raw Phenotypes
	Tripal BibTeX
	Tripal Plant PopGen Submission
	Migrate Chado

	Developer Tools
	TripalDock
	Tripal Download API
	Tripal D3.js API
	Tripal Fields Generator
	Tripal Rapid Installer
	Tripal Test Suite

	Third-party Integration
	BrAPI
	Tripal Blast
	Tripal Galaxy
	Tripal JBrowse
	VCF Filter

	Searching
	CartograTree
	Mainlab Chado Search
	Tripal ElasticSearch
	Tripal MegaSearch
	Tripal Sequence Similarity Search

	Visualization/Display
	Analyzed Phenotypes
	CvitEmbed
	Mainlab Tripal Data Display
	ND Genotypes
	Phylotree
	Tripal Fancy Fields
	Tripal MapViewer

	In Development
	Tripal Apollo
	Tripal Multi-Chado

	Tripal Module Rating System
	Bronze
	Silver
	Gold
	Rate your Extension Module!

	Adding your Module to this list!
	Instructions
	Guidelines


	Tripal Community
	Guidelines for Contribution to Tripal
	Github Communication Tips
	Bugs
	Feature Requests
	Pull Request (PR) Guideline
	How to create a PR

	How PRs and Issues are Handled
	Code of Conduct
	Testing/CI

	Unit Tests for Tripal
	Tripal Test Suite
	Installation

	Testing criteria
	Test organization
	Submodules
	Categories

	Writing tests
	Tagging tests
	Defining the test class
	Defining individual tests
	Testing quietly


	Contributing to the Documentation
	Guide
	Install Sphinx
	Building your changes
	Tripal conventions


	Tripal Governance
	Adopters
	Extension Contributors
	Core Code Contributors
	Committers
	The Tripal Project Management Committee (PMC)
	Communication and Meetings

	Tripal Advisory Committee (TAC)
	Membership
	TAC Chair
	TAC Meeting Agenda Items
	Communication and Meetings

	Changes to this Document

	Funding Proposal Development


